Evaluation and Restoration of Corrosion-Damaged Post-Tensioned Concrete Structures

Hadif Alsuwaidi, Zaid A. Al-Sadoon, Salah Altoubat, Samer Barakat, M. Talha Junaid, Mohamed Maalej, Abdulrahman Metawa, Ahed Habib

Abstract


This study addresses the pressing issue of chloride-induced corrosion in post-tensioned (PT) concrete structures, known for their strength and flexibility yet vulnerable to durability issues in extreme climates. The objective is to evaluate corrosion mechanisms in a PT building in the United Arab Emirates and develop a robust restoration strategy. Using a combination of nondestructive and semi-destructive testing methods, this research identifies severe deterioration in critical structural elements, such as steel tendons, PT ducts, and concrete surfaces, largely due to high chloride exposure and aggravated by environmental factors like acid rain and fluctuating temperatures and humidity. The findings reveal serious inadequacies in current maintenance practices, often overlooking long-term corrosion risks in harsh climates. In response, this study proposes a comprehensive repair strategy, including removing damaged materials and applying advanced repair products, protective coatings, and waterproofing measures to enhance the structure's durability. This case study highlights significant concerns regarding structural integrity and provides practical insights into effective maintenance and repair strategies for PT structures. By offering a targeted, sustainable intervention approach, this research contributes to developing PT maintenance protocols, particularly in regions prone to aggressive corrosion, ensuring the longevity and safety of these critical structures.

 

Doi: 10.28991/CEJ-2024-010-12-02

Full Text: PDF


Keywords


Post-Tensioned Concrete; Corrosion; Chloride Attack; Monitoring; Structural Repair.

References


Mangual, J., ElBatanouny, M. K., Ziehl, P., & Matta, F. (2013). Acoustic-emission-based characterization of corrosion damage in cracked concrete with prestressing strand. ACI Materials Journal, 110(1), 89–98. doi:10.14359/51684369.

Menga, A., Kanstad, T., & Cantero, D. (2022). Corrosion induced failures of post-tensioned bridges. Norwegian University of Science and Technology, Trondheim, Norway.

Kamalakannan, S., Thirunavukkarasu, R., Pillai, R. G., & Santhanam, M. (2018). Factors affecting the performance characteristics of cementitious grouts for post-tensioning applications. Construction and Building Materials, 180, 681–691. doi:10.1016/j.conbuildmat.2018.05.236.

Li, H., Yang, Y., Wang, X., & Tang, H. (2023). Effects of the position and chloride-induced corrosion of strand on bonding behavior between the steel strand and concrete. Structures, 58, 105500. doi:10.1016/j.istruc.2023.105500.

Santarsiero, G., Picciano, V., Masi, A., & Ventura, G. (2024). Retrofit of PRC bridges by external post-tension under different corrosion scenarios. Bridge Maintenance, Safety, Management, Digitalization and Sustainability, 571–579, CRC Press, Boca Raton, United States. doi:10.1201/9781003483755-65.

Emmons, P. H., & Vaysburd, A. M. (1997). Corrosion protection in concrete repair: myth and reality. Concrete International, 19(3), 47–56.

Vennesland, Ø., Raupach, M., & Andrade, C. (2007). Recommendation of Rilem TC 154-EMC: “Electrochemical techniques for measuring corrosion in concrete”—measurements with embedded probes. Materials and Structures, 40(8), 745–758. doi:10.1617/s11527-006-9219-4.

Carsana, M., & Bertolini, L. (2016). Characterization of segregated grout promoting corrosion of posttensioning tendons. Journal of Materials in Civil Engineering, 28(6), 04016009. doi:10.1061/(ASCE)MT.1943-5533.0001451.

Andrade, C. (2023). Role of Oxygen and Humidity in the Reinforcement Corrosion. Proceedings of the 75th RILEM Annual Week 2021. RW 2021, RILEM Bookseries, 40. Springer, Cham, Switzerland. doi:10.1007/978-3-031-21735-7_35.

Shakouri, M., Abraham, O.F., Vaddey, N.P. (2024). Assessing Passivation and Corrosion of Post-tensioning Strand in Grouts Under Chloride Salt Exposure. Smart & Sustainable Infrastructure: Building a Greener Tomorrow. ISSSI 2023. RILEM Bookseries, 48, Springer, Cham, Switzerland. doi:10.1007/978-3-031-53389-1_83.

Tanaka, Y., Kawano, H., Watanabe, H., & Kimura, T. (2001). Chloride-induced deterioration and its influence on load carrying capacity of post-tensioned concrete bridges. 3rd International Conference on Concrete under Severe Conditions of Environment and Loading (CONSEC'01), 18-20 June, 2001, Vancouver, Canada.

Minh, H., Mutsuyoshi, H., & Niitani, K. (2007). Influence of grouting condition on crack and load-carrying capacity of post-tensioned concrete beam due to chloride-induced corrosion. Construction and Building Materials, 21(7), 1568–1575. doi:10.1016/j.conbuildmat.2005.10.004.

Lee, S. K. (2022). Corrosion-Induced Durability Issues and Maintenance Strategies for Post-Tensioned Concrete Bridges. No. FHWA-HRT-22-090, Office of Infrastructure Research and Development, Federal Highway Administration, McLean, United States.

Carsana, M., & Bertolini, L. (2015). Corrosion failure of post-tensioning tendons in alkaline and chloride-free segregated grout: a case study. Structure and Infrastructure Engineering, 11(3), 402–411. doi:10.1080/15732479.2014.887736.

Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., & Polder, R. B. (2013). Corrosion of steel in concrete: prevention, diagnosis, repair. John Wiley & Sons, Hoboken, United States. doi:10.1002/9783527651696.

Constantinescu, V., Bogus, G. V., Taran, R. G., & Carcea, I. (2014). New composite materials that reduce the effect of reinforcement corrosion. Advanced Materials Research, 837, 265–270. doi:10.4028/www.scientific.net/AMR.837.265.

Wootton, I. A., Spainhour, L. K., & Yazdani, N. (2003). Corrosion of Steel Reinforcement in Carbon Fiber-Reinforced Polymer Wrapped Concrete Cylinders. Journal of Composites for Construction, 7(4), 339–347. doi:10.1061/(asce)1090-0268(2003)7:4(339).

Al-Mosawe, D., Neves, L., & Owen, J. (2022). Reliability analysis of deteriorated post-tensioned concrete bridges: The case study of Ynys-y-Gwas bridge in UK. Structures, 41, 242–259. doi:10.1016/j.istruc.2022.04.094.

Li, F., Yuan, Y., & Li, C. Q. (2011). Corrosion propagation of prestressing steel strands in concrete subject to chloride attack. Construction and Building Materials, 25(10), 3878–3885. doi:10.1016/j.conbuildmat.2011.04.011.

Wang, L., Hu, Z., Yi, J., Dai, L., Ma, Y., & Zhang, X. (2020). Shear Behavior of Corroded Post-Tensioned Prestressed Concrete Beams with Full/Insufficient Grouting. KSCE Journal of Civil Engineering, 24(6), 1881–1892. doi:10.1007/s12205-020-1777-4.

Joyklad, P., Ali, N., Chaiyasarn, K., Suparp, S., & Hussain, Q. (2022). Time-dependent behavior of full-scale precast post-tensioned (PCPT) girders: Experimental and finite element analysis. Case Studies in Construction Materials, 17, e01310. doi:10.1016/j.cscm.2022.e01310.

Green, W. K., Katen, J. B., & McDonald, D. B. (2021). Long Life Chloride Affected Concrete Structures–Some Corrosion Mechanistic Considerations. NACE Corrosion, April, Virtual.

Permeh, S., & Lau, K. (2023). Assessment of Post-Tensioned Grout Durability by Accelerated Robustness and Corrosion Testing. Construction Materials, 3(4), 449–461. doi:10.3390/constrmater3040029.

Joseline, D., Pillai, R. G., & Neelakantan, L. (2021). Initiation of Stress Corrosion Cracking in Cold-Drawn Prestressing Steel in Hardened Cement Mortar Exposed to Chlorides. Corrosion, 77(8), 906–922. doi:10.5006/3730.

Broomfield, J. P. (2011). Corrosion of Steel in Concrete. Uhlig’s Corrosion Handbook, 633–647, CRC Press, London, United Kingdom. doi:10.1002/9780470872864.ch49.

Michałek, J., & Gago, F. (2024). Service Life of Pre-Tensioned Concrete Structures in a Chloride Environment on the Example of an Aluminium Foundry Building. Materials, 17(12), 2985. doi:10.3390/ma17122985.

Liu, X., Zhang, W., Sun, P., & Liu, M. (2022). Time-Dependent Seismic Fragility of Typical Concrete Girder Bridges under Chloride-Induced Corrosion. Materials, 15(14), 5020. doi:10.3390/ma15145020.

Yang, Z.-N., Lu, Z.-H., Li, C.-Q., Liu, X., & Song, X. (2024). Effect of grouting quality on flexural behavior of corroded post-tensioned concrete T-beams. Case Studies in Construction Materials, 21, e03766. doi:10.1016/j.cscm.2024.e03766.

Mehta, P. K. (2006). Concrete: Microstructure, Properties, and Materials. McGraw-Hill, New York, United States.

Yu, Q. Q., Gu, X. L., Zeng, Y. H., & Zhang, W. P. (2022). Flexural behavior of Corrosion-Damaged prestressed concrete beams. Engineering Structures, 272, 114985. doi:10.1016/j.engstruct.2022.114985.

Giriraju, R., Sengupta, A. K., & Pillai, R. G. (2022). Tensile Behaviour of Corroded Strands in Prestressed Concrete Systems. Journal of The Institution of Engineers (India): Series A, 103(3), 867–879. doi:10.1007/s40030-022-00656-y.

Bentur, A. (1997). Steel Corrosion in Concrete. CRC Press, London, United Kingdom. doi:10.1201/9781482271898.

Wang, Y., Pan, Z., Zhao, C., & Zeng, B. (2023). Long-term behavior of prestressed concrete industrial buildings in chloride-based industrial environments. Journal of Building Engineering, 76, 107344. doi:10.1016/j.jobe.2023.107344.

Lau, K., Permeh, S., & Lasa, I. (2023). Corrosion of prestress and posttension reinforced concrete bridges. Corrosion of Steel in Concrete Structures, 81–105. doi:10.1016/B978-0-12-821840-2.00013-4.

Hoła, J., Bień, J., Sadowski, L., & Schabowicz, K. (2015). Non-destructive and semi-destructive diagnostics of concrete structures in assessment of their durability. Bulletin of the Polish Academy of Sciences: Technical Sciences, 63(1), 87–96. doi:10.1515/bpasts-2015-0010.

Geophysical Survey Systems, Inc. (2017). RADAN 7. Geophysical Survey Systems, Inc., Nashua, United States.

BS EN 14630:2006. (2006). Products and systems for the protection and repair of concrete structures - test methods - determination of carbonation depth in hardened concrete by the phenolphthalein method. British Standard Institute (BSI), London, United Kingdom.

RILEM CPC-18. (1988). Measurement of Hardened Concrete Carbonation Depth. RILEM 14-20, Descartes, France.

ASTM C876-22b. (2022). Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0876-22B.

BS EN 12504-1:2009. (2009). Testing concrete in structures. Cored specimens. Taking, examining, and testing in compression. British Standard Institute (BSI), London, United Kingdom.

BS 1881-124:2015. (2015). Part 124: Methods for analysis of hardened concrete. British Standard Institute (BSI), London, United Kingdom.

BS 4449:2005+A3:2016. (2016). Steel for the reinforcement of concrete. Weldable reinforcing steel. Bar, coil and decoiled product. British Standard Institute (BSI), London, United Kingdom.

ASTM C1202-19. (2012). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International, Pennsylvania, United States. doi:10.1520/C1202-19.

Glass, G. K., Hassanein, A. M., & Buenfeld, N. R. (2001). Cathodic protection afforded by an intermittent current applied to reinforced concrete. Corrosion Science, 43(6), 1111–1131. doi:10.1016/S0010-938X(00)00133-5.

Hansson, C. M. (1984). Comments on electrochemical measurements of the rate of corrosion of steel in concrete. Cement and Concrete Research, 14(4), 574–584. doi:10.1016/0008-8846(84)90135-2.

Permeh, S., & Lau, K. (2022). Review of Electrochemical Testing to Assess Corrosion of Post-Tensioned Tendons with Segregated Grout. Construction Materials, 2(2), 70–84. doi:10.3390/constrmater2020006.

Tuutti, K. (1982). Corrosion of steel in concrete. Swedish Cement and Concrete Research Institute, Stockholm, Sweden.

Poursaee, A., & Hansson, C. M. (2009). Potential pitfalls in assessing chloride-induced corrosion of steel in concrete. Cement and Concrete Research, 39(5), 391–400. doi:10.1016/j.cemconres.2009.01.015.

ACI 228.1R-19. (2019). Report on Methods for Estimating In-Place Concrete Strength. American Concrete Institute (ACI), Michigan, United States.

ACI RAP Bulletin 5. (2003). Surface Repair using Form-and-Pump Techniques. American Concrete Institute (ACI), Michigan, United States.

ACI RAP Bulletin 6. (2003). Vertical and Overhead Spall Repair by Hand Application. American Concrete Institute (ACI), Michigan, United States.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-12-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Hadif Alsuwaidi, Zaid A. Al-Sadoon, Salah Altoubat, Samer Barakat, M Talha Junaid, Mohamed Maaleej, Abdulrahman Metawa, Ahed Habib

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message