Investigating Mechanical Properties of Metakaolin-Based Geopolymer Concrete Optimized with Wastepaper Ash and Plastic Granules

Midhin A. Khaleel Midhin, Leong Sing Wong

Abstract


This study develops an environmentally friendly geopolymer concrete (GPC) using wastepaper ash (WPA) and high-density polyethylene (HDPE) granules, addressing environmental challenges such as wastepaper and HDPE disposal and CO2emissions from cement production. WPA was produced by incinerating wastepaper at 550 °C for one hour and used as a partial replacement for MK in ratios of 10%, 20%, 30%, 40%, 50%, and 100%, while HDPE granules replaced river sand in ratios from 1% to 5%. The results showed that the use of 30% WPA resulted in a compressive strength (CS) of 35.38 MPa, which was significantly higher than the control sample's CS of 31.62 MPa. The use of 30% WPA increased slump due to lower water demand. The combination of 3% HDPE and 30% WPA further enhanced the mechanical properties, resulting in a CS of 36.54 MPa, representing a 15.5% increase over the control. However, the addition of 3% HDPE and 30% WPA reduced the slump, attributed to the increased friction from the HDPE granules. Advanced analyses, including SEM, EDX, and XRD, confirmed a refined pore structure and increased geopolymerization in the treated GPC. It is novel to optimize WPA and HDPE as waste products in the production of MK-based GPC.

 

Doi: 10.28991/CEJ-SP2024-010-011

Full Text: PDF


Keywords


Geopolymer Concrete; Wastepaper Ash; HDPE; Energy Saving; Waste Materials; Mechanical and Chemical Properties.

References


Li, H., Deng, Q., Zhang, J., Xia, B., & Skitmore, M. (2019). Assessing the life cycle CO2 emissions of reinforced concrete structures: Four cases from China. Journal of Cleaner Production, 210, 1496–1506. doi:10.1016/j.jclepro.2018.11.102.

Hendriks, C. A., Worrell, E., Price, L., Martin, N., Ozawa Meida, L., de Jager, D., & Riemer, P. (1999). Emission reduction of greenhouse gases from the cement industry. Greenhouse Gas Control Technologies 4, 30, 939–944. doi:10.1016/b978-008043018-8/50150-8.

Lawrence, C. D. (1998). The Production of Low-Energy Cements. Lea’s Chemistry of Cement and Concrete, 421–470, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-075066256-7/50021-7.

John, S. K., Nadir, Y., & Girija, K. (2021). Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: A review. Construction and Building Materials, 280, 122443. doi:10.1016/j.conbuildmat.2021.122443.

Davidovits, J. (2013). Geopolymer cement. A review. Geopolymer Institute, Technical papers, 21, Geopolymer Institute Library, Saint-Quentin, France.

Wetzel, A., & Middendorf, B. (2019). Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag. Cement and Concrete Composites, 100, 53–59. doi:10.1016/j.cemconcomp.2019.03.023.

Cai, R., Wu, T., Fu, C., & Ye, H. (2022). Thermal degradation of potassium-activated ternary slag-fly ash-silica fume binders. Construction and Building Materials, 320. doi:10.1016/j.conbuildmat.2021.126304.

Xu, S., Yuan, P., Liu, J., Pan, Z., Liu, Z., Su, Y., Li, J., & Wu, C. (2021). Development and preliminary mix design of ultra-high-performance concrete based on geopolymer. Construction and Building Materials, 308, 125110. doi:10.1016/j.conbuildmat.2021.125110.

Nair, A. S., Al-Bahry, S., Gathergood, N., Tripathi, B. N., & Sivakumar, N. (2020). Production of microbial lipids from optimized waste office paper hydrolysate, lipid profiling and prediction of biodiesel properties. Renewable Energy, 148, 124–134. doi:10.1016/j.renene.2019.12.008.

Ighalo, J. O., & Adeniyi, A. G. (2020). A perspective on environmental sustainability in the cement industry. Waste Disposal and Sustainable Energy, 2(3), 161–164. doi:10.1007/s42768-020-00043-y.

Ali, A., Hashmi, H. N., & Baig, N. (2013). Treatment of the paper mill effluent-A review. Annals of the Faculty of Engineering Hunedoara, 11(3), 337.

Wang Wang, B., Li, K., Nan, D., Feng, S., Hu, B., Wang, T., & Lu, Q. (2022). Enhanced production of levoglucosenone from pretreatment assisted catalytic pyrolysis of waste paper. Journal of Analytical and Applied Pyrolysis, 165, 105567. doi:10.1016/j.jaap.2022.105567.

Beyene, H. D., Werkneh, A. A., & Ambaye, T. G. (2018). Current updates on waste to energy (WtE) technologies: a review. Renewable Energy Focus, 24, 1–11. doi:10.1016/j.ref.2017.11.001.

Das, S., Lee, S. H., Kumar, P., Kim, K. H., Lee, S. S., & Bhattacharya, S. S. (2019). Solid waste management: Scope and the challenge of sustainability. Journal of Cleaner Production, 228, 658–678. doi:10.1016/j.jclepro.2019.04.323.

Ma, Y., Wang, J., & Zhang, Y. (2017). TG–FTIR study on pyrolysis of waste printing paper. Journal of Thermal Analysis and Calorimetry, 129(2), 1225–1232. doi:10.1007/s10973-017-6218-3.

Solahuddin, B. A., & Yahaya, F. M. (2021). Properties of concrete containing shredded waste paper as an additive. Materials Today: Proceedings, 51, 1350–1354. doi:10.1016/j.matpr.2021.11.390.

Palanichamy, P., Venkatachalam, S., & Gupta, S. (2023). Improved recovery of cellulose nanoparticles from printed wastepaper and its reinforcement in guar gum films. Biomass Conversion and Biorefinery, 13(15), 14113–14125. doi:10.1007/s13399-022-02516-y.

Zhou, R. X., Stanley, R., & Le, M. (2012). Contamination of food with newspaper ink: An evidence-informed decision making (EIDM) case study of homemade dessert. Environmental Health Review, 55(02), 63–69. doi:10.5864/d2012-005.

Duan, H., Zhao, Q., Song, J., & Duan, Z. (2021). Identifying opportunities for initiating waste recycling: Experiences of typical developed countries. Journal of Cleaner Production, 324. doi:10.1016/j.jclepro.2021.129190.

Chen, W., Shi, S., Chen, M., & Zhou, X. (2017). Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons. Waste Management, 67, 155–162. doi:10.1016/j.wasman.2017.05.032.

Lakhiar, M. T., Bai, Y., Wong, L. S., Paul, S. C., Anggraini, V., & Kong, S. Y. (2022). Mechanical and durability properties of epoxy mortar incorporating coal bottom ash as filler. Construction and Building Materials, 315. doi:10.1016/j.conbuildmat.2021.125677.

Antunes Boca Santa, R. A., Bernardin, A. M., Riella, H. G., & Kuhnen, N. C. (2013). Geopolymer synthetized from bottom coal ash and calcined paper sludge. Journal of Cleaner Production, 57, 302–307. doi:10.1016/j.jclepro.2013.05.017.

Adesanya, E., Ohenoja, K., Luukkonen, T., Kinnunen, P., & Illikainen, M. (2018). One-part geopolymer cement from slag and pretreated paper sludge. Journal of Cleaner Production, 185, 168–175. doi:10.1016/j.jclepro.2018.03.007.

Spathi, C., Young, N., Heng, J. Y. Y., Vandeperre, L. J. M., & Cheeseman, C. R. (2015). A simple method for preparing super-hydrophobic powder from paper sludge ash. Materials Letters, 142, 80–83. doi:10.1016/j.matlet.2014.11.123.

Kim, M. J., & Jeon, J. (2020). Effects of Ca-ligand stability constant and chelating agent concentration on the CO2 storage using paper sludge ash and chelating agent. Journal of CO2 Utilization, 40. doi:10.1016/j.jcou.2020.101202.

Yan, S., & Sagoe-Crentsil, K. (2016). Evaluation of fly ash geopolymer mortar incorporating calcined wastepaper sludge. Journal of Sustainable Cement-Based Materials, 5(6), 370–380. doi:10.1080/21650373.2016.1174962.

Sadique, M., Al-Nageim, H., Atherton, W., Seton, L., & Dempster, N. (2019). Analytical investigation of hydration mechanism of a non-Portland binder with waste paper sludge ash. Construction and Building Materials, 211, 80–87. doi:10.1016/j.conbuildmat.2019.03.232.

De Silva, G. S., & De Silva, B. G. N. G. (2023). Run-off water qualities and engineering properties of sustainable paving blocks with combined waste: waste rice husk ash and coal bottom ash. Innovative Infrastructure Solutions, 8(6), 165. doi:10.1007/s41062-023-01125-6.

Luo, Y. P., Yang, L. B., Wang, D., Zhang, Q., Wang, Z. Y., Xing, M. G., Xue, G., Zhang, J., & Liu, Z. (2024). Effect of GGBFS on the mechanical properties of metakaolin-based self-compacting geopolymer concrete. Journal of Building Engineering, 96. doi:10.1016/j.jobe.2024.110501.

Gopalakrishna, B., & Pasla, D. (2024). Study of Ambient Cured Fly Ash-GGBS-Metakaolin-Based Geopolymers Mortar. Low Carbon Materials and Technologies for a Sustainable and Resilient Infrastructure. CBKR 2023, Lecture Notes in Civil Engineering, 440, Springer, Singapore. doi:10.1007/978-981-99-7464-1_3.

Thakur, M., & Bawa, S. (2024). Evaluation of strength and durability properties of fly ash-based geopolymer concrete containing GGBS and dolomite. Energy, Ecology and Environment, 9(3), 256–271. doi:10.1007/s40974-023-00309-1.

World Green Building Council (2019). Global Status Report for Buildings and Construction. World Green Building Council, London, United Kingdom.

Yan, H., Shen, Q., Fan, L. C. H., Wang, Y., & Zhang, L. (2010). Greenhouse gas emissions in building construction: A case study of One Peking in Hong Kong. Building and Environment, 45(4), 949–955. doi:10.1016/j.buildenv.2009.09.014.

Miller, S. A., Habert, G., Myers, R. J., & Harvey, J. T. (2021). Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies. One Earth, 4(10), 1398–1411. doi:10.1016/j.oneear.2021.09.011.

Ford, H. V., Jones, N. H., Davies, A. J., Godley, B. J., Jambeck, J. R., Napper, I. E., Suckling, C. C., Williams, G. J., Woodall, L. C., & Koldewey, H. J. (2022). The fundamental links between climate change and marine plastic pollution. Science of the Total Environment, 806, 150392. doi:10.1016/j.scitotenv.2021.150392.

Major, K. (2021). Plastic Waste and Climate Change—What’s the Connection. World Wildlife Fund, Gland, Switzerland.

Kumar, R., Verma, A., Shome, A., Sinha, R., Sinha, S., Jha, P. K., Kumar, R., Kumar, P., Shubham, Das, S., Sharma, P., & Prasad, P. V. V. (2021). Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability (Switzerland), 13(17), 9963. doi:10.3390/su13179963.

Zheng, J., & Suh, S. (2019). Strategies to reduce the global carbon footprint of plastics. Nature Climate Change, 9(5), 374–378. doi:10.1038/s41558-019-0459-z.

Stegmann, P., Daioglou, V., Londo, M., van Vuuren, D. P., & Junginger, M. (2022). Plastic futures and their CO2 emissions. Nature, 612(7939), 272–276. doi:10.1038/s41586-022-05422-5.

Venkatarama Reddy, B. V. (2009). Sustainable materials for low carbon buildings. International Journal of Low-Carbon Technologies, 4(3), 175–181. doi:10.1093/ijlct/ctp025.

Crawford, R. H. (2022). Greenhouse Gas Emissions of Global Construction Industries. IOP Conference Series: Materials Science and Engineering, 1218(1), 012047. doi:10.1088/1757-899x/1218/1/012047.

Abeysinghe, S., Gunasekara, C., Bandara, C., Nguyen, K., Dissanayake, R., & Mendis, P. (2021). Engineering performance of concrete incorporated with recycled high-density polyethylene (HDPE)—A systematic review. Polymers, 13(11), 1885. doi:10.3390/polym13111885.

Tamrin, Jamal, M., & Ramadhani, P. (2020). The effect of the shape and size of HDPE plastic admixtures on to K125 concrete. IOP Conference Series: Earth and Environmental Science, 419(1), 12066. doi:10.1088/1755-1315/419/1/012066.

Atienza, E. M., De Jesus, R. M., & Ongpeng, J. M. C. (2023). Development of Foam Fly Ash Geopolymer with Recycled High-Density Polyethylene (HDPE) Plastics. Polymers, 15(11), 2413. doi:10.3390/polym15112413.

Tamil Selvi, M., Dasarathy, A. K., & Ponkumar Ilango, S. (2021). Mechanical properties on light weight aggregate concrete using high density polyethylene granules. Materials Today: Proceedings, 81(2), 926–930. doi:10.1016/j.matpr.2021.04.302.

Zhang, H. Y., Kodur, V., Qi, S. L., Cao, L., & Wu, B. (2014). Development of metakaolin-fly ash based geopolymers for fire resistance applications. Construction and Building Materials, 55, 38–45. doi:10.1016/j.conbuildmat.2014.01.040.

Yang, K. H., Cho, A. R., Song, J. K., & Nam, S. H. (2012). Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Construction and Building Materials, 29, 410-419. doi:10.1016/j.conbuildmat.2011.10.063.

Andrew R.M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10(4), 1–20. doi:10.5281/zenodo.831455.

Nath, P., & Sarker, P. K. (2017). Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Construction and Building Materials, 130, 22–31. doi:10.1016/j.conbuildmat.2016.11.034.

Mohammadhosseini, H., Ngian, S. P., Alyousef, R., & Tahir, M. M. (2021). Synergistic effects of waste plastic food tray as low-cost fibrous materials and palm oil fuel ash on transport properties and drying shrinkage of concrete. Journal of Building Engineering, 42, 102826. doi:10.1016/j.jobe.2021.102826.

Pacheco-Torgal, F., Cabeza, L. F., Labrincha, J., & De Magalhaes, A. G. (2014). Eco-efficient construction and building materials: life cycle assessment (LCA), eco-labelling and case studies. Woodhead Publishing, Sawston, United Kingdom.

Munir, Q., Abdulkareem, M., Horttanainen, M., & Kärki, T. (2023). A comparative cradle-to-gate life cycle assessment of geopolymer concrete produced from industrial side streams in comparison with traditional concrete. Science of the Total Environment, 865, 161230. doi:10.1016/j.scitotenv.2022.161230.

Cordeiro, G. C., Toledo Filho, R. D., & Fairbairn, E. M. R. (2009). Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construction and Building Materials, 23(10), 3301–3303. doi:10.1016/j.conbuildmat.2009.02.013.

Cherian, C., & Siddiqua, S. (2019). Pulp and paper mill fly ash: A review. Sustainability (Switzerland), 11(16), 4394. doi:10.3390/su11164394.

Midhin, M. A. K., Wong, L. S., & Jasim, A. M. D. A. (2024). Assessing the Influence of Calcium-Based Alkaline Activators and Metakaolin on the Compressive Strength Development of Geopolymer Concrete for Different Mix Design Parameters. Annales de Chimie: Science Des Materiaux, 48(5), 667–677. doi:10.18280/acsm.480507.

ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.

BS EN 12390-3. (2009). Testing Hardened Concrete. CS of Test Specimens. Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. British Standard Institute, London, United Kingdom.

BS EN 12390-6. (2009). Testing hardened concrete. Tensile splitting strength of test specimens. British Standard Institute, London, United Kingdom.

ASTM C293/C293M-16. (2016). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0293_C0293M-16.

ASTM C597-16. (2016). Standard Test Method for Pulse Velocity through Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0597-16.

ASTM C642-21. (2022). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0642-21.

Kumar, P., Pankar, C., Manish, D., & Santhi, A. S. (2018). Study of mechanical and microstructural properties of geopolymer concrete with GGBS and Metakaolin. Materials Today: Proceedings, 5(14), 28127–28135. doi:10.1016/j.matpr.2018.10.054.

Vu, C. C., Plé, O., Weiss, J., & Amitrano, D. (2020). Revisiting the concept of characteristic compressive strength of concrete. Construction and Building Materials, 263. doi:10.1016/j.conbuildmat.2020.120126.

Wong, L. S., Oweida, A. F. M., Kong, S. Y., Iqbal, D. M., & Regunathan, P. (2020). The surface coating mechanism of polluted concrete by Candida ethanolica induced calcium carbonate mineralization. Construction and Building Materials, 257, 119482. doi:10.1016/j.conbuildmat.2020.119482.

Wang, Z., Zou, D., Liu, T., & Zhou, A. (2021). Influence of paste coating thickness on the compressive strength, permeability, and mesostructure of permeable concrete. Construction and Building Materials, 299, 123994. doi:10.1016/j.conbuildmat.2021.123994.

Fletcher, R. A., MacKenzie, K. J. D., Nicholson, C. L., & Shimada, S. (2005). The composition range of aluminosilicate geopolymers. Journal of the European Ceramic Society, 25(9), 1471–1477. doi:10.1016/j.jeurceramsoc.2004.06.001.

Autef, A., Joussein, E., Gasgnier, G., & Rossignol, S. (2012). Role of the silica source on the geopolymerization rate ALL or. Journal of Non-Crystalline Solids, 358(21), 2886–2893. doi:10.1016/j.jnoncrysol.2012.07.015.

Meko, B., & Ighalo, J. (2021). Utilization of waste paper ash as supplementary cementitious material in C-25 concrete: Evaluation of fresh and hardened properties. Cogent Engineering, 8(1), 1938366. doi:10.1080/23311916.2021.1938366.

Singh, R. P., Vanapalli, K. R., Cheela, V. R. S., Peddireddy, S. R., Sharma, H. B., & Mohanty, B. (2023). Fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates: Properties and environmental impacts. Construction and Building Materials, 378, 131168. doi:10.1016/j.conbuildmat.2023.131168.

Singh, R. P., Vanapalli, K. R., Jadda, K., & Mohanty, B. (2024). Durability assessment of fly ash, GGBS, and silica fume based geopolymer concrete with recycled aggregates against acid and sulfate attack. Journal of Building Engineering, 82, 108354. doi:10.1016/j.jobe.2023.108354.

Rathinam, K., & Kanagarajan, V. (2022). Behaviour of Fly ash and GGBS based Monoblock Prestressed Geopolymer Concrete Composite sleepers. Materials Today: Proceedings, 65, 3321–3327. doi:10.1016/j.matpr.2022.05.406.

Bouaissi, A., Li, L. yuan, Al Bakri Abdullah, M. M., & Bui, Q. B. (2019). Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Construction and Building Materials, 210, 198–209. doi:10.1016/j.conbuildmat.2019.03.202.

Gao, X., Yu, Q. L., & Brouwers, H. J. H. (2015). Properties of alkali activated slag-fly ash blends with limestone addition. Cement and Concrete Composites, 59, 119–128. doi:10.1016/j.cemconcomp.2015.01.007.

Prusty, J. K., & Pradhan, B. (2020). Effect of GGBS and chloride on compressive strength and corrosion performance of steel in fly ash-GGBS based geopolymer concrete. Materials Today: Proceedings, 32, 850–855. doi:10.1016/j.matpr.2020.04.210.

Dawood, A. O., AL-Khazraji, H., & Falih, R. S. (2021). Physical and mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates. Case Studies in Construction Materials, 14, 482. doi:10.1016/j.cscm.2020.e00482.

Ismail, Z. Z., & AL-Hashmi, E. A. (2008). Use of waste plastic in concrete mixture as aggregate replacement. Waste Management, 28(11), 2041–2047. doi:10.1016/j.wasman.2007.08.023.

Jindal, B. B., Singhal, D., Sharma, S. K., & Ashish, D. K. (2017). Improving CS of low calcium fly ash GPC with alccofine. Advances in Concrete Construction, 5(1), 17. doi:10.12989/acc.2017.19.2.017.

Waqas, R. M., Butt, F., Zhu, X., Jiang, T., & Tufail, R. F. (2021). A comprehensive study on the factors affecting the workability and mechanical properties of ambient cured fly ash and slag based geopolymer concrete. Applied Sciences (Switzerland), 11(18), 8722. doi:10.3390/app11188722.

Xie, J., Wang, J., Rao, R., Wang, C., & Fang, C. (2019). Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Composites Part B: Engineering, 164, 179–190. doi:10.1016/j.compositesb.2018.11.067.

Lee, W. K. W., & Van Deventer, J. S. J. (2002). The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cement and Concrete Research, 32(4), 577–584. doi:10.1016/S0008-8846(01)00724-4.

Hadi, M. N. S., Zhang, H., & Parkinson, S. (2019). Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability. Journal of Building Engineering, 23, 301–313. doi:10.1016/j.jobe.2019.02.006.

Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. doi:10.1016/j.conbuildmat.2014.05.080.

Poloju, K. K., & Srinivasu, K. (2020). Impact of GGBS and strength ratio on mechanical properties of geopolymer concrete under ambient curing and oven curing. Materials Today: Proceedings, 42, 962–968. doi:10.1016/j.matpr.2020.11.934.

Pawluczuk, E., Kalinowska-Wichrowska, K., Jiménez, J. R., Fernández-Rodríguez, J. M., & Suescum-Morales, D. (2021). Geopolymer concrete with treated recycled aggregates: Macro and microstructural behavior. Journal of Building Engineering, 44, 103317. doi:10.1016/j.jobe.2021.103317.

Shilar, F. A., Ganachari, S. V., Patil, V. B., Neelakanta Reddy, I., & Shim, J. (2023). Preparation and validation of sustainable metakaolin based geopolymer concrete for structural application. Construction and Building Materials, 371, 130688. doi:10.1016/j.conbuildmat.2023.130688.

Deb, P. S., Nath, P., & Sarker, P. K. (2014). The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials and Design, 62, 32–39. doi:10.1016/j.matdes.2014.05.001.

Matalkah, F., Aqel, R., & Ababneh, A. (2020). Enhancement of the Mechanical Properties of Kaolin Geopolymer Using Sodium Hydroxide and Calcium Oxide. Procedia Manufacturing, 44, 164–171. doi:10.1016/j.promfg.2020.02.218.

Yip, C. K., Lukey, G. C., & Van Deventer, J. S. J. (2005). The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cement and Concrete Research, 35(9), 1688–1697. doi:10.1016/j.cemconres.2004.10.042.

Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., & MacPhee, D. E. (2011). Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO 2-H2O. Cement and Concrete Research, 41(9), 923–931. doi:10.1016/j.cemconres.2011.05.006.

Zhao, X., Liu, C., Zuo, L., Wang, L., Zhu, Q., & Wang, M. (2019). Investigation into the effect of calcium on the existence form of geopolymerized gel product of fly ash based geopolymers. Cement and Concrete Composites, 103, 279–292. doi:10.1016/j.cemconcomp.2018.11.019.

Rahim, N. L., Salehuddin, S., Ibrahim, N. M., Amat, R. C., & Ab Jalil, M. F. (2013). Use of plastic waste (high density polyethylene) in concrete mixture as aggregate replacement. Advanced Materials Research, 701, 265–269. doi:10.4028/www.scientific.net/AMR.701.265.

Santhi, Mh., & Santhi, H. M. (2017). Strength and Chloride Permeable Properties of Concrete with High Density Polyethylene Waste. Article in International Journal of Chemical Sciences, 15(1), 108.

Kangavar, M. E., Lokuge, W., Manalo, A., Karunasena, W., & Frigione, M. (2022). Investigation on the properties of concrete with recycled polyethylene terephthalate (PET) granules as fine aggregate replacement. Case Studies in Construction Materials, 16, 934. doi:10.1016/j.cscm.2022.e00934.

Parashar, A. K., Sharma, P., & Sharma, N. (2022). Effect on the strength of GGBS and fly ash based geopolymer concrete. Materials Today: Proceedings, 62, 4130–4133. doi:10.1016/j.matpr.2022.04.662.

Saxena, A., Sulaiman, S. S., Shariq, M., & Ansari, M. A. (2023). Experimental and analytical investigation of concrete properties made with recycled coarse aggregate and bottom ash. Innovative Infrastructure Solutions, 8(7), 197. doi:10.1007/s41062-023-01165-y.

BS 1881-125. (1986). Testing Concrete Part 203. Recommendations for measurement of velocity of ultrasonic pulses in concrete. In Construction Standard (Vol. 2, Issue 2, pp. 1–14).

Albidah, A., Alqarni, A. S., Abbas, H., Almusallam, T., & Al-Salloum, Y. (2022). Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperatures. Construction and Building Materials, 317. doi:10.1016/j.conbuildmat.2021.125910.

Bellum, R. R., Muniraj, K., & Madduru, S. R. C. (2020). Influence of slag on mechanical and durability properties of fly ash-based geopolymer concrete. Journal of the Korean Ceramic Society, 57(5), 530–545. doi:10.1007/s43207-020-00056-7.

Xu, Z., Long, H., Liu, Q., Yu, H., Zhang, X., & Hui, D. (2023). Mechanical properties and durability of geopolymer concrete based on fly ash and coal gangue under different dosage and particle size of nano silica. Construction and Building Materials, 387, 131622. doi:10.1016/j.conbuildmat.2023.131622.

Lim, J. C., & Ozbakkaloglu, T. (2015). Influence of concrete age on stress-strain behavior of FRP-confined normal- and high-strength concrete. Construction and Building Materials, 82, 61–70. doi:10.1016/j.conbuildmat.2015.02.020.

Gao, D., Zhang, L., & Nokken, M. (2017). Compressive behavior of steel fiber reinforced recycled coarse aggregate concrete designed with equivalent cubic compressive strength. Construction and Building Materials, 141, 235–244. doi:10.1016/j.conbuildmat.2017.02.136.

Chitrala, S., Jadaprolu, G. J., & Chundupalli, S. (2018). Study and predicting the stress-strain characteristics of geopolymer concrete under compression. Case Studies in Construction Materials, 8, 172–192. doi:10.1016/j.cscm.2018.01.010.

Biswal, U. S., Mishra, M., Singh, M. K., & Pasla, D. (2022). Experimental investigation and comparative machine learning prediction of the compressive strength of recycled aggregate concrete incorporated with fly ash, GGBS, and metakaolin. Innovative Infrastructure Solutions, 7(4), 242. doi:10.1007/s41062-022-00844-6.

Yadollahi, M. M., & Benli, A. (2017). Stress-strain behavior of geopolymer under uniaxial compression. Computers and Concrete, 20(4), 381–389. doi:10.12989/cac.2017.20.4.381.

Ju, C., Liu, Y., Jia, M., Yu, K., Yu, Z., & Yang, Y. (2020). Effect of calcium oxide on mechanical properties and microstructure of alkali-activated slag composites at sub-zero temperature. Journal of Building Engineering, 32, 101561. doi:10.1016/j.jobe.2020.101561.

Yuan, X. H., Chen, W., Lu, Z. A., & Chen, H. (2014). Shrinkage compensation of alkali-activated slag concrete and microstructural analysis. Construction and Building Materials, 66, 422–428. doi:10.1016/j.conbuildmat.2014.05.085.

Verma, M., Dev, N., Rahman, I., Nigam, M., Ahmed, M., & Mallick, J. (2022). Geopolymer Concrete: A Material for Sustainable Development in Indian Construction Industries. Crystals, 12(4), 514. doi:10.3390/cryst12040514.

Zhang, Y., Fan, Z., Sun, X., & Zhu, X. (2022). Utilization of surface-modified fly ash cenosphere waste as an internal curing material to intensify concrete performance. Journal of Cleaner Production, 358. doi:10.1016/j.jclepro.2022.132042.

Wong, L. S., Chandran, S. N., Rajasekar, R. R., & Kong, S. Y. (2022). Pozzolanic characterization of waste newspaper ash as a supplementary cementing material of concrete cylinders. Case Studies in Construction Materials, 17, 1342. doi:10.1016/j.cscm.2022.e01342.

Midhin, M. A. K., Wong, L. S., Ahmed, A. N., Jasim, A. M. D. A., & Paul, S. C. (2023). Strength and Chemical Characterization of Ultra High-Performance Geopolymer Concrete: A Coherent Evaluation. Civil Engineering Journal (Iran), 9(12), 3254–3277. doi:10.28991/CEJ-2023-09-12-020.


Full Text: PDF

DOI: 10.28991/CEJ-SP2024-010-011

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Midhin Abdulrahman Khaleel Midhin, Leong Sing Wong

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message