Experimental Study of the Dynamic Behavior of Stabilised Marl with Lime

Micipsa Lasheb, Bachir Melbouci

Abstract


The variable characteristics of weathered marl cause engineering problems, particularly in geotechnics, and require in-depth studies to design structures. Where these characteristics are poor, lime is used to stabilize the soil. Experimental research is being carried out on various Tizi-Ouzou marls composed of different percentages of CaCO3. The aim is to study their behavior in the presence of quicklime and its impact on the evolution of their geotechnical characteristics to provide effective and economical solutions for stabilization. These marls are mixed with increasing percentages of lime and subjected to a series of tests in which cyclic shear is essential for simulating dynamic effects. The results obtained confirm the improvement in their geotechnical characteristics. On the one hand, interstitial pressures and cyclic deformations have decreased, thus avoiding the risk of liquefaction, subsidence, or settlement. On the other hand, cyclic stresses and resistances have increased, resulting in better resistance of these stabilized marls to dynamic stresses. Finally, the number of cycles required to reach failure has increased, thus reducing the risk of pavement damage. These results depend primarily on the percentage of CaCO3in the marl.

 

Doi: 10.28991/CEJ-2025-011-01-09

Full Text: PDF


Keywords


Marl; CaCO3; Tests; Treatment; Stabilization; Behavior.

References


Delahaye, D., & Roux, A. (1975). Désordres sur des remblais en marne, Bulletin de liaison des laboratoires des ponts et chaussées. Institut Francais des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), 75, 113–124.

Le Roux, A. (1969). Contribution to the study of lime treatment of clay materials. Doctoral thesis, University of Sciences of Orsay, Paris, France.

Bell, F. G. (1996). Lime stabilization of clay minerals and soils. Engineering Geology, 42(4), 223–237. doi:10.1016/0013-7952(96)00028-2.

Herrier, G., Lesueur, D., Puiatti, D., Auriol, J. C., Chevalier, C., Haghighi, I., ... & Fry, J. J. (2012). Lime treated materials for embankment and hardfill dam. ICOLD 2012–International Symposium On Dams For A Changing World, Kyoto, Japan.

Haddad, S., Melbouci, B., Szymkiewicz, F., Duc, M., & Amiri, O. (2023). Alteration under wet/dry cycles of a carbonated clay-rich soil from Azazga landslide site. Geotechnical and Geological Engineering, 41(2), 1453-1472. doi:10.1007/s10706-022-02347-8.

Seco, A., Ramírez, F., Miqueleiz, L., Garci, B., & Prieto, E. (2011). The use of non-conventional additives in Marls stabilization. Applied Clay Science, 51(4), 419–423. doi:10.1016/j.clay.2010.12.032.

Chauquette M . (1988). Lime stabilisation of clay soils in Quebec. Ph.D. thesis, Faculty of Science and Engineering, Laval University, Quebec. Canada.

Locat, J., Berube, M. A., & Choquette, M. (1990). Laboratory investigations on the lime stabilization of sensitive clays: shear strength development. Canadian Geotechnical Journal, 27(3), 294–304. doi:10.1139/t90-040.

Rogers, C. D., Glendinning, S., & Dixon, N. (1996). Lime stabilisation: proceedings of the seminar held at Loughborough University Civil & Building Engineering Department on 25 September, 1996. doi:10.1680/ls.25639.

Diamond, S., & Kinter, E. B. (1965). Mechanisms of soil-lime stabilization. Highway research record, 92(303), 83-102.

Herzog, A., & Mitchell, J. K. (1963). Reactions accompanying stabilization of clay with cement. Highway Research Record Highway Research Board, National Research Council, 36, 146–171.

Eades, J., & Grim, R. E. (1960). Reaction of Hydrated Lime with Clay Minerals in Soil Stabilization. Highway Research Board Bulletin, 262, 51–63.

Diamond, S., White, J. L., & Dolch, W. L. (1963). Transformation of Clay Minerals by Calcium Hydroxide Attack. Clays and Clay Minerals (National Conference on Clays and Clay Minerals), 12, 359–379. doi:10.1346/ccmn.1963.0120134.

Basma, A. A., & Tuncer, E. R. (1991). Effect of lime on volume change and compressibility of expansive clays. Transportation and Research Record, C(1295), 52–61.

Imelhaine A. (2009). Behavior of marl when treated with lime and cement. Master's thesis in Civil Engineering, University of Blida, Algeria.

Bahadori, H., Hasheminezhad, A., & Taghizadeh, F. (2019). Experimental Study on Marl Soil Stabilization Using Natural Pozzolans. Journal of Materials in Civil Engineering, 31(2), 04018363. doi:10.1061/(asce)mt.1943-5533.0002577.

James, J., & Sivakumar, V. (2022). An appraisal on the parameters influencing lime stabilization of soils. Journal of Materials and Engineering Structures, 9, 221–236.

Driss, A. A. E., Harichane, K., & Ghrici, M. (2022). Effect of lime on the stabilization of an expansive clay soil in Algeria. Journal of Geomechanics and Geoengineering, 1(1), 1–10. doi:10.38208/jgg.v1i1.413.

Aqel, R., Attom, M., El-Emam, M., & Yamin, M. (2024). Piping Stabilization of Clay Soil Using Lime. Geosciences (Switzerland), 14(5), 122. doi:10.3390/geosciences14050122.

Weng, Z. Q., Huang, X. Y., Chen, J. Da, Lu, S. L., Ni, D. Y., & Wang, J. F. (2024). Compressibility of lime-treated dredged slurry with high water content. In Scientific Reports (Vol. 14, Issue 1). doi:10.1038/s41598-024-63777-3.

Abdulkader K. (2002). Multi-scale study of a plastic clay soil treated with lime. PhD thesis University of Orléans, France.

Akoto, B. K. A., & Singh, G. (1981). Some geotechnical properties of a lime-stabilized laterite containing a high proportion of aluminium oxide. Engineering Geology, 17(3), 185–199. doi:10.1016/0013-7952(81)90083-1.

Attoh-Okine, B. (1990). Stabilising effect of locally produced lime on selected lateritic soils. Construction and Building Materials, 4(2), 86–91. doi:10.1016/0950-0618(90)90006-M.

Osula, D. O. A. (1996). A comparative evaluation of cement and lime modification of laterite. Engineering Geology, 42(1), 71–81. doi:10.1016/0013-7952(95)00067-4.

Brandl, H. (1981). Alteration of Soil Parameters By Stabilization With Lime. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, 3, 587–594. doi:10.1016/0148-9062(84)91866-7.

Tanzadeh, R., Vafaeian, M., & Yusefzadeh Fard, M. (2019). Effects of micro-nano-lime (CaCO3) particles on the strength and resilience of road clay beds. Construction and Building Materials, 217, 193–201. doi:10.1016/j.conbuildmat.2019.05.048.

Kavak, A., & Akyarli, A. (2007). A field application for lime stabilization. Environmental Geology, 51(6), 987–997. doi:10.1007/s00254-006-0368-0.

Kulanthaivel, P., Soundara, B., Velmurugan, S., & Naveenraj, V. (2021). Experimental investigation on stabilization of clay soil using nano-materials and white cement. Materials Today: Proceedings, 45, 507–511. doi:10.1016/j.matpr.2020.02.107.

Salih, S. R., & Shafiqu, Q. S. M. (2024). Effect of Treating Expansive Soil with Lime. Al-Nahrain Journal for Engineering Sciences, 27(2), 226-233. doi:10.29194/njes.27020226.

Muhammad, G., Marri, A., & Ansari, A. A. (2024). Impact of Lime Stabilization on the Dry Density, Specific Gravity, and Moisture Content of Clayey Soil. Zhongguo Kuangye Daxue Xuebao, 29(4), 168-174. doi:10.1654/zkdx.2024.29.4-15.

Sambre, T., Endait, M., & Patil, S. (2024). Sustainable soil stabilization of expansive soil subgrades through lime-fly ash admixture. Discover Civil Engineering, 1(1). doi:10.1007/s44290-024-00063-1.

Wissa, A. E., Ladd, C. C., & Lambe, T. W. (1964). Effective stress strength parameters of stabilized soils. MIT Department of Civil Engineering, Massachusetts Institute of Technology, Massachusetts, United States.

Balasubramaniam, A. S. (1989). On the overconsolidated behavior of lime treated soft clay. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, 2, 1335–1338.

Balasubramaniam, A. S., Buensuceso, B. R., Oh, E. Y., Bolton, M., Bergado, D. T., & Lorenzo, G. A. (2005). Strength degradation and critical state seeking behaviour of lime treated soft clay. Deep Mixing, 5, 35-40.

Andersen, K. (2004). Cyclic clay data for foundation design of structures subjected to wave loading. Cyclic Behaviour of Soils and Liquefaction Phenomena, 371–387. doi:10.1201/9781439833452.pt5.

Jessie, D. B. (2016). the study of the static and cyclic behavior of two sensitive clays from eastern Canada. Master's thesis in civil engineering, Université LAVAL, Québec, Canada.

Mustapha, A. (2017). Study of the behavior of sensitive Beauharnois clay under monotonic and cyclic loads. Master's thesis in civil engineering, Université LAVAL, Québec, Canada.

Boulanger, R. W., & Idriss, I. M. (2006). Liquefaction Susceptibility Criteria for Silts and Clays. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1413–1426. doi:10.1061/(asce)1090-0241(2006)132:11(1413).

Boulanger, R., & Idriss, I. (2004). Evaluating the potential for liquefaction or cyclic failure of silts and clays. Neuroscience Letters, Volume 339, Issue December 2004. Center for Geotechnical Modeling, University of California, California, United States.

Andersen, KH. (1975). Research project on repeated loading on clay: summary and interpretation of test results. NGI Research Report 74037-9.

Malek, A. M., Azzouz, A. S., Baligh, M. M., & Germaine, J. T. (1989). Behavior of foundation clays supporting compliant offshore structures. Journal of Geotechnical Engineering, 115(5), 615–636. doi:10.1061/(ASCE)0733-9410(1989)115:5(615).

Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior. John Wiley & Sons, New York, United States.

Sangrey, D. A., Henkel, D. J., & Esrig, M. I. (1969). The effective stress response of a saturated clay soil to repeated loading. Canadian Geotechnical Journal, 6(3), 241-252. doi:10.1139/t69-027.

Selig, E. T., & Chang, C. S. (1981). Soil failure modes in undrained cyclic loading. Journal of the Geotechnical Engineering Division, ASCE, 107(GT5, Proc. Paper, 16238), 539–551. doi:10.1061/ajgeb6.0001128.

Wilson, N. E., & Greenwood, J. R. (1974). Pore Pressures and Strains After Repeated Loading of Saturated Clay. Canadian Geotechnical Journal, 11(2), 269–277. doi:10.1139/t74-023.

Mollaei, M., Jahanian, H., & Azadi, M. (2023). Laboratory Study of the Cyclic Behavior of Cement Sand with Nanoclay. Geotechnical and Geological Engineering, 41(6), 3375–3387. doi:10.1007/s10706-023-02463-z.

Terzaghi, K. (1925). Erdbaumechanik auf bodenphysikalischer. Grundlage. Leipzig, Germany.

Seed, H. B., Woodward, R. J., & Lundgren, R. (1962). Prediction of Swelling Potential for Compacted Clays. Journal of the Soil Mechanics and Foundations Division, 88(3), 53–87. doi:10.1061/jsfeaq.0000431.

ASTM D6528-07 (2007). Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils. ASTM International, 1–10. doi:10.1520/d6528.

Moore, R.K. (1987). Lime Stabilization. Transportation Research Board, National Research Council, Washington, D.C. State of the Art Report 5, 1-59.

Bergado, D. T., Anderson, L. R., Miura, N., & Balasubramaniam, A. S. (1996). Soft ground improvement in lowland and other environments. ASCE Press, New York, United States.

Yoo, S. (2019). An experimental investigation on the reduction of Marine An experimental investigation on the reduction of Marine. International Congress in Civil Engineering, Eastern Mediterranean University the Gazimagusa, Famagusta, Cyprus.

Mitchell, R. J., & King, R. D. (1977). Cyclic Loading of an Ottawa Area Champlain Sea Clay. Canadian Geotechnical Journal, 14(1), 52–63. doi:10.1139/t77-004.

Idriss, I. M., & Boulanger, R. W. (2008). Soil liquefaction during earthquakes. Earthquake Engineering Research Institute, 136(6), 755.

Galindo-Aires, R., Lara-Galera, A., & Melentijevic, S. (2019). Hysteresis Model for Dynamic Load under Large Strains. International Journal of Geomechanics, 19(6), 4019051. doi:10.1061/(asce)gm.1943-5622.0001428.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-01-09

Refbacks





Copyright (c) 2025 Micipsa LASHEB

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message