Experimental Study of the Dynamic Behavior of Stabilised Marl with Lime
Downloads
Doi: 10.28991/CEJ-2025-011-01-09
Full Text: PDF
Downloads
[2] Le Roux, A. (1969). Contribution to the study of lime treatment of clay materials. Doctoral thesis, University of Sciences of Orsay, Paris, France.
[3] Bell, F. G. (1996). Lime stabilization of clay minerals and soils. Engineering Geology, 42(4), 223–237. doi:10.1016/0013-7952(96)00028-2.
[4] Herrier, G., Lesueur, D., Puiatti, D., Auriol, J. C., Chevalier, C., Haghighi, I., ... & Fry, J. J. (2012). Lime treated materials for embankment and hardfill dam. ICOLD 2012–International Symposium On Dams For A Changing World, Kyoto, Japan.
[5] Haddad, S., Melbouci, B., Szymkiewicz, F., Duc, M., & Amiri, O. (2023). Alteration under wet/dry cycles of a carbonated clay-rich soil from Azazga landslide site. Geotechnical and Geological Engineering, 41(2), 1453-1472. doi:10.1007/s10706-022-02347-8.
[6] Seco, A., Ramírez, F., Miqueleiz, L., Garci, B., & Prieto, E. (2011). The use of non-conventional additives in Marls stabilization. Applied Clay Science, 51(4), 419–423. doi:10.1016/j.clay.2010.12.032.
[7] Chauquette M . (1988). Lime stabilisation of clay soils in Quebec. Ph.D. thesis, Faculty of Science and Engineering, Laval University, Quebec. Canada.
[8] Locat, J., Berube, M. A., & Choquette, M. (1990). Laboratory investigations on the lime stabilization of sensitive clays: shear strength development. Canadian Geotechnical Journal, 27(3), 294–304. doi:10.1139/t90-040.
[9] Rogers, C. D., Glendinning, S., & Dixon, N. (1996). Lime stabilisation: proceedings of the seminar held at Loughborough University Civil & Building Engineering Department on 25 September, 1996. doi:10.1680/ls.25639.
[10] Diamond, S., & Kinter, E. B. (1965). Mechanisms of soil-lime stabilization. Highway research record, 92(303), 83-102.
[11] Herzog, A., & Mitchell, J. K. (1963). Reactions accompanying stabilization of clay with cement. Highway Research Record Highway Research Board, National Research Council, 36, 146–171.
[12] Eades, J., & Grim, R. E. (1960). Reaction of Hydrated Lime with Clay Minerals in Soil Stabilization. Highway Research Board Bulletin, 262, 51–63.
[13] Diamond, S., White, J. L., & Dolch, W. L. (1963). Transformation of Clay Minerals by Calcium Hydroxide Attack. Clays and Clay Minerals (National Conference on Clays and Clay Minerals), 12, 359–379. doi:10.1346/ccmn.1963.0120134.
[14] Basma, A. A., & Tuncer, E. R. (1991). Effect of lime on volume change and compressibility of expansive clays. Transportation and Research Record, C(1295), 52–61.
[15] Imelhaine A. (2009). Behavior of marl when treated with lime and cement. Master's thesis in Civil Engineering, University of Blida, Algeria.
[16] Bahadori, H., Hasheminezhad, A., & Taghizadeh, F. (2019). Experimental Study on Marl Soil Stabilization Using Natural Pozzolans. Journal of Materials in Civil Engineering, 31(2), 04018363. doi:10.1061/(asce)mt.1943-5533.0002577.
[17] James, J., & Sivakumar, V. (2022). An appraisal on the parameters influencing lime stabilization of soils. Journal of Materials and Engineering Structures, 9, 221–236.
[18] Driss, A. A. E., Harichane, K., & Ghrici, M. (2022). Effect of lime on the stabilization of an expansive clay soil in Algeria. Journal of Geomechanics and Geoengineering, 1(1), 1–10. doi:10.38208/jgg.v1i1.413.
[19] Aqel, R., Attom, M., El-Emam, M., & Yamin, M. (2024). Piping Stabilization of Clay Soil Using Lime. Geosciences (Switzerland), 14(5), 122. doi:10.3390/geosciences14050122.
[20] Weng, Z. Q., Huang, X. Y., Chen, J. Da, Lu, S. L., Ni, D. Y., & Wang, J. F. (2024). Compressibility of lime-treated dredged slurry with high water content. In Scientific Reports (Vol. 14, Issue 1). doi:10.1038/s41598-024-63777-3.
[21] Abdulkader K. (2002). Multi-scale study of a plastic clay soil treated with lime. PhD thesis University of Orléans, France.
[22] Akoto, B. K. A., & Singh, G. (1981). Some geotechnical properties of a lime-stabilized laterite containing a high proportion of aluminium oxide. Engineering Geology, 17(3), 185–199. doi:10.1016/0013-7952(81)90083-1.
[23] Attoh-Okine, B. (1990). Stabilising effect of locally produced lime on selected lateritic soils. Construction and Building Materials, 4(2), 86–91. doi:10.1016/0950-0618(90)90006-M.
[24] Osula, D. O. A. (1996). A comparative evaluation of cement and lime modification of laterite. Engineering Geology, 42(1), 71–81. doi:10.1016/0013-7952(95)00067-4.
[25] Brandl, H. (1981). Alteration of Soil Parameters By Stabilization With Lime. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, 3, 587–594. doi:10.1016/0148-9062(84)91866-7.
[26] Tanzadeh, R., Vafaeian, M., & Yusefzadeh Fard, M. (2019). Effects of micro-nano-lime (CaCO3) particles on the strength and resilience of road clay beds. Construction and Building Materials, 217, 193–201. doi:10.1016/j.conbuildmat.2019.05.048.
[27] Kavak, A., & Akyarli, A. (2007). A field application for lime stabilization. Environmental Geology, 51(6), 987–997. doi:10.1007/s00254-006-0368-0.
[28] Kulanthaivel, P., Soundara, B., Velmurugan, S., & Naveenraj, V. (2021). Experimental investigation on stabilization of clay soil using nano-materials and white cement. Materials Today: Proceedings, 45, 507–511. doi:10.1016/j.matpr.2020.02.107.
[29] Salih, S. R., & Shafiqu, Q. S. M. (2024). Effect of Treating Expansive Soil with Lime. Al-Nahrain Journal for Engineering Sciences, 27(2), 226-233. doi:10.29194/njes.27020226.
[30] Muhammad, G., Marri, A., & Ansari, A. A. (2024). Impact of Lime Stabilization on the Dry Density, Specific Gravity, and Moisture Content of Clayey Soil. Zhongguo Kuangye Daxue Xuebao, 29(4), 168-174. doi:10.1654/zkdx.2024.29.4-15.
[31] Sambre, T., Endait, M., & Patil, S. (2024). Sustainable soil stabilization of expansive soil subgrades through lime-fly ash admixture. Discover Civil Engineering, 1(1). doi:10.1007/s44290-024-00063-1.
[32] Wissa, A. E., Ladd, C. C., & Lambe, T. W. (1964). Effective stress strength parameters of stabilized soils. MIT Department of Civil Engineering, Massachusetts Institute of Technology, Massachusetts, United States.
[33] Balasubramaniam, A. S. (1989). On the overconsolidated behavior of lime treated soft clay. Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, 2, 1335–1338.
[34] Balasubramaniam, A. S., Buensuceso, B. R., Oh, E. Y., Bolton, M., Bergado, D. T., & Lorenzo, G. A. (2005). Strength degradation and critical state seeking behaviour of lime treated soft clay. Deep Mixing, 5, 35-40.
[35] Andersen, K. (2004). Cyclic clay data for foundation design of structures subjected to wave loading. Cyclic Behaviour of Soils and Liquefaction Phenomena, 371–387. doi:10.1201/9781439833452.pt5.
[36] Jessie, D. B. (2016). the study of the static and cyclic behavior of two sensitive clays from eastern Canada. Master's thesis in civil engineering, Université LAVAL, Québec, Canada.
[37] Mustapha, A. (2017). Study of the behavior of sensitive Beauharnois clay under monotonic and cyclic loads. Master's thesis in civil engineering, Université LAVAL, Québec, Canada.
[38] Boulanger, R. W., & Idriss, I. M. (2006). Liquefaction Susceptibility Criteria for Silts and Clays. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1413–1426. doi:10.1061/(asce)1090-0241(2006)132:11(1413).
[39] Boulanger, R., & Idriss, I. (2004). Evaluating the potential for liquefaction or cyclic failure of silts and clays. Neuroscience Letters, Volume 339, Issue December 2004. Center for Geotechnical Modeling, University of California, California, United States.
[40] Andersen, KH. (1975). Research project on repeated loading on clay: summary and interpretation of test results. NGI Research Report 74037-9.
[41] Malek, A. M., Azzouz, A. S., Baligh, M. M., & Germaine, J. T. (1989). Behavior of foundation clays supporting compliant offshore structures. Journal of Geotechnical Engineering, 115(5), 615–636. doi:10.1061/(ASCE)0733-9410(1989)115:5(615).
[42] Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior. John Wiley & Sons, New York, United States.
[43] Sangrey, D. A., Henkel, D. J., & Esrig, M. I. (1969). The effective stress response of a saturated clay soil to repeated loading. Canadian Geotechnical Journal, 6(3), 241-252. doi:10.1139/t69-027.
[44] Selig, E. T., & Chang, C. S. (1981). Soil failure modes in undrained cyclic loading. Journal of the Geotechnical Engineering Division, ASCE, 107(GT5, Proc. Paper, 16238), 539–551. doi:10.1061/ajgeb6.0001128.
[45] Wilson, N. E., & Greenwood, J. R. (1974). Pore Pressures and Strains After Repeated Loading of Saturated Clay. Canadian Geotechnical Journal, 11(2), 269–277. doi:10.1139/t74-023.
[46] Mollaei, M., Jahanian, H., & Azadi, M. (2023). Laboratory Study of the Cyclic Behavior of Cement Sand with Nanoclay. Geotechnical and Geological Engineering, 41(6), 3375–3387. doi:10.1007/s10706-023-02463-z.
[47] Terzaghi, K. (1925). Erdbaumechanik auf bodenphysikalischer. Grundlage. Leipzig, Germany.
[48] Seed, H. B., Woodward, R. J., & Lundgren, R. (1962). Prediction of Swelling Potential for Compacted Clays. Journal of the Soil Mechanics and Foundations Division, 88(3), 53–87. doi:10.1061/jsfeaq.0000431.
[49] ASTM D6528-07 (2007). Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils. ASTM International, 1–10. doi:10.1520/d6528.
[50] Moore, R.K. (1987). Lime Stabilization. Transportation Research Board, National Research Council, Washington, D.C. State of the Art Report 5, 1-59.
[51] Bergado, D. T., Anderson, L. R., Miura, N., & Balasubramaniam, A. S. (1996). Soft ground improvement in lowland and other environments. ASCE Press, New York, United States.
[52] Yoo, S. (2019). An experimental investigation on the reduction of Marine An experimental investigation on the reduction of Marine. International Congress in Civil Engineering, Eastern Mediterranean University the Gazimagusa, Famagusta, Cyprus.
[53] Mitchell, R. J., & King, R. D. (1977). Cyclic Loading of an Ottawa Area Champlain Sea Clay. Canadian Geotechnical Journal, 14(1), 52–63. doi:10.1139/t77-004.
[54] Idriss, I. M., & Boulanger, R. W. (2008). Soil liquefaction during earthquakes. Earthquake Engineering Research Institute, 136(6), 755.
[55] Galindo-Aires, R., Lara-Galera, A., & Melentijevic, S. (2019). Hysteresis Model for Dynamic Load under Large Strains. International Journal of Geomechanics, 19(6), 4019051. doi:10.1061/(asce)gm.1943-5622.0001428.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.