A Study of Biomass Concrete Reinforced with Fiber Composites to Enhance Impact Load Capacity

Kunanon Sakkampang, Piyorus Tasenhog, Nirut Onsalung, Narong Huchaiyaphum

Abstract


This research investigates the energy absorption from impact forces of steel reinforced concrete using fly ash obtained from agricultural processes, reinforced with glass fiber-reinforced polymer (GFRP) bars, compared to steel reinforcement. The reinforcement pattern involves incorporating GFRP bars into a square grid pattern of 4, 9, and 12 openings within bio-steel concrete with dimensions (W × L × H) of 40 × 40 × 10 cm. The testing is conducted using a Drop Test impact testing machine with a 30 kg hammer head at a velocity of 7 m/s, employing two different hammer head configurations: flat and 45-degree angled, to study energy absorption (Ea), specific energy absorption (Es), and the pattern of deformation resulting from impacts. The study finds that CBRHA-10-fiber A concrete exhibits higher energy absorption and specific energy absorption compared to steel-reinforced (CBRHA-10-steel A) concrete in the same configuration by 18.82% and 26.83%, respectively, in the flat-headed hammer impact configuration. Similarly, in the 45-degree angled hammer head configuration, CBRHA-10-fiber A concrete demonstrates superior energy absorption and specific energy absorption compared to steel reinforcement in the same configuration by 6.10% and 14.92%, respectively. In conclusion, bio-steel reinforced concrete with glass fiber-reinforced polymer (GRFP) reinforcement exhibits good load-bearing capacity and suitability as an alternative to steel reinforcement in future applications.

 

Doi: 10.28991/CEJ-2025-011-02-020

Full Text: PDF


Keywords


Biomass Concrete; Glass Fiber-Reinforced Polymer (GRFP); Energy Absorption; Specific Energy Absorption.

References


Neville, A.M. (2011) Properties of Concrete. Pearson Education Limited, London, United Kingdom.

Smitha, M. P., Suji, D., Shanthi, M., & Adesina, A. (2022). Application of bacterial biomass in biocementation process to enhance the mechanical and durability properties of concrete. Cleaner Materials, 3, 100050. doi:10.1016/j.clema.2022.100050.

Benjamin, B., Zachariah, S., Sudhakumar, J., & Suchithra, T. V. (2024). Harnessing construction biotechnology for sustainable upcycled cement composites: A meta-analytical review. Journal of Building Engineering, 86. doi:10.1016/j.jobe.2024.108973.

Zhou, Z., Wei, Y., Wang, G., Wang, J., Lin, Y., & Zhu, B. (2024). Experimental study on the basic properties of new biomass bamboo aggregate concrete. Journal of Building Engineering, 86, 108892. doi:10.1016/j.jobe.2024.108892.

Trabucchi, I., Tiberti, G., Conforti, A., Medeghini, F., & Plizzari, G. A. (2021). Experimental study on Steel Fiber Reinforced Concrete and Reinforced Concrete elements under concentrated loads. Construction and Building Materials, 307, 124834. doi:10.1016/j.conbuildmat.2021.124834.

Yoo, D. Y., & Banthia, N. (2019). Impact resistance of fiber-reinforced concrete – A review. Cement and Concrete Composites, 104, 103389. doi:10.1016/j.cemconcomp.2019.103389.

Wang, J., Fu, R., & Dong, H. (2023). Carbon nanofibers and PVA fiber hybrid concrete: Abrasion and impact resistance. Journal of Building Engineering, 80, 107894. doi:10.1016/j.jobe.2023.107894.

Murali, G., Katman, H. Y. B., Wong, L. S., Ibrahim, M. R., Ramkumar, V. R., & Abid, S. R. (2023). Effect of recycled lime sludge, calcined clay and silica fume blended binder-based fibrous concrete with superior impact strength and fracture toughness. Construction and Building Materials, 409, 133880. doi:10.1016/j.conbuildmat.2023.133880.

Ji, Y., Gao, Z., Chen, W., Huang, H., Li, M., & Li, X. (2024). Study on the deformation mode and energy absorption characteristics of a corner-enhanced biomimetic spider web hierarchical structure. Thin-Walled Structures, 199, 111810. doi:10.1016/j.tws.2024.111810.

Han, Z., Ma, Z., Tong, S., Shen, G., Sun, Y., Li, J., Zhao, H., & Ren, L. (2024). Simultaneous enhancements of energy absorption and strength driven by hexagonal close-packed lattice structures of resin revealed by in-situ compression. Thin-Walled Structures, 197, 111586. doi:10.1016/j.tws.2024.111586.

Gharehbaghi, H., & Farrokhabadi, A. (2024). Experimental, analytical, and numerical studies of the energy absorption capacity of bi-material lattice structures based on quadrilateral bipyramid unit cell. Composite Structures, 337, 118042. doi:10.1016/j.compstruct.2024.118042.

Liu, H., Li, Q., & Ni, S. (2022). Assessment of the engineering properties of biomass recycled aggregate concrete developed from coconut shells. Construction and Building Materials, 342, 128015. doi:10.1016/j.conbuildmat.2022.128015.

Xiao, J.-Zh., Li, J.-B., & Zhang, Ch. (2006). On relationships between the mechanical properties of recycled aggregate concrete: An overview. Materials and Structures, 39(6), 655–664. doi:10.1617/s11527-006-9093-0.

Radonjanin, V., Malešev, M., Marinković, S., & Al Malty, A. E. S. (2013). Green recycled aggregate concrete. Construction and Building Materials, 47, 1503–1511. doi:10.1016/j.conbuildmat.2013.06.076.

Andreu, G., & Miren, E. (2014). Experimental analysis of properties of high performance recycled aggregate concrete. Construction and Building Materials, 52, 227–235. doi:10.1016/j.conbuildmat.2013.11.054.

Tam, V. W. Y., Butera, A., Le, K. N., & Li, W. (2020). Utilising CO2 technologies for recycled aggregate concrete: A critical review. Construction and Building Materials, 250, 118903. doi:10.1016/j.conbuildmat.2020.118903.

Venkatanarayanan, H. K., & Rangaraju, P. R. (2013). Material Characterization Studies on Low- and High-Carbon Rice Husk Ash and Their Performance in Portland Cement Mixtures. Advances in Civil Engineering Materials, 2(1), 266–287. doi:10.1520/acem20120056.

Beltrán, M. G., Agrela, F., Barbudo, A., Ayuso, J., & Ramírez, A. (2014). Mechanical and durability properties of concretes manufactured with biomass bottom ash and recycled coarse aggregates. Construction and Building Materials, 72, 231–238. doi:10.1016/j.conbuildmat.2014.09.019.

Lim, J. S., Abdul Manan, Z., Wan Alwi, S. R., & Hashim, H. (2012). A review on utilisation of biomass from rice industry as a source of renewable energy. Renewable and Sustainable Energy Reviews, 16(5), 3084–3094. doi:10.1016/j.rser.2012.02.051.

Feng, Q. G., Lin, Q. Y., Yu, Q. J., Zhao, S. Y., Yang, L. F., & Sugita, S. (2004). Concrete with highly active rice husk ash. Journal Wuhan University of Technology, Materials Science Edition, 19(3), 74–77. doi:10.1007/bf02835067.

Padhi, R. S., Patra, R. K., Mukharjee, B. B., & Dey, T. (2018). Influence of incorporation of rice husk ash and coarse recycled concrete aggregates on properties of concrete. Construction and Building Materials, 173, 289–297. doi:10.1016/j.conbuildmat.2018.03.270.

Prasara-A, J., & Gheewala, S. H. (2017). Sustainable utilization of rice husk ash from power plants: A review. Journal of Cleaner Production, 167, 1020–1028. doi:10.1016/j.jclepro.2016.11.042.

Huang, H., Gao, X., Wang, H., & Ye, H. (2017). Influence of rice husk ash on strength and permeability of ultra-high performance concrete. Construction and Building Materials, 149, 621–628. doi:10.1016/j.conbuildmat.2017.05.155.

Arabani, M., & Tahami, S. A. (2017). Assessment of mechanical properties of rice husk ash modified asphalt mixture. Construction and Building Materials, 149, 350–358. doi:10.1016/j.conbuildmat.2017.05.127.

Le, H. T., & Ludwig, H. M. (2020). Alkali silica reactivity of rice husk ash in cement paste. Construction and Building Materials, 243, 118145. doi:10.1016/j.conbuildmat.2020.118145.

Camargo-Pérez, N. R., Abellán-García, J., & Fuentes, L. (2023). Use of rice husk ash as a supplementary cementitious material in concrete mix for road pavements. Journal of Materials Research and Technology, 25, 6167–6182. doi:10.1016/j.jmrt.2023.07.033.

Chalee, W., Sasakul, T., Suwanmaneechot, P., & Jaturapitakkul, C. (2013). Utilization of rice husk-bark ash to improve the corrosion resistance of concrete under 5-year exposure in a marine environment. Cement and Concrete Composites, 37(1), 47–53. doi:10.1016/j.cemconcomp.2012.12.007.

Zain, M. F. M., Islam, M. N., Mahmud, F., & Jamil, M. (2011). Production of rice husk ash for use in concrete as a supplementary cementitious material. Construction and Building Materials, 25(2), 798–805. doi:10.1016/j.conbuildmat.2010.07.003.

Makul, N., & Sua-iam, G. (2018). Effect of granular urea on the properties of self-consolidating concrete incorporating untreated rice husk ash: Flowability, compressive strength and temperature rise. Construction and Building Materials, 162, 489–502. doi:10.1016/j.conbuildmat.2017.12.023.

Hwang, C. L., & Huynh, T. P. (2015). Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Construction and Building Materials, 101, 1–9. doi:10.1016/j.conbuildmat.2015.10.025.

Nuaklong, P., Janprasit, K., & Jongvivatsakul, P. (2021). Enhancement of strengths of high-calcium fly ash geopolymer containing borax with rice husk ash. Journal of Building Engineering, 40, 102762. doi:10.1016/j.jobe.2021.102762.

Patil, G. M., & Prakash, S. S. (2024). Effect of macro-synthetic and hybrid fibres on the behaviour of square concrete columns reinforced with GFRP rebars under eccentric compression. Structures, 59, 105707. doi:10.1016/j.istruc.2023.105707.

Nematzadeh, M., & Fallah-Valukolaee, S. (2021). Experimental and analytical investigation on structural behavior of two-layer fiber-reinforced concrete beams reinforced with steel and GFRP rebars. Construction and Building Materials, 273, 121933. doi:10.1016/j.conbuildmat.2020.121933.

Yoo, D. Y., Kwon, K. Y., Park, J. J., & Yoon, Y. S. (2015). Local bond-slip response of GFRP rebar in ultra-high-performance fiber-reinforced concrete. Composite Structures, 120, 53–64. doi:10.1016/j.compstruct.2014.09.055.

Yoo, D. Y., Banthia, N., & Yoon, Y. S. (2016). Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Engineering Structures, 111, 246–262. doi:10.1016/j.engstruct.2015.12.003.

Sijavandi, K., Sharbatdar, M. K., & Kheyroddin, A. (2021). Experimental evaluation of flexural behavior of High-Performance Fiber Reinforced Concrete Beams using GFRP and High Strength Steel Bars. Structures, 33, 4256–4268. doi:10.1016/j.istruc.2021.07.020.

Banthia, N., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 36(7), 1263–1267. doi:10.1016/j.cemconres.2006.01.010.

Celik, K., Meral, C., Mancio, M., Mehta, P. K., & Monteiro, P. J. M. (2014). A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash. Construction and Building Materials, 67, 14–19. doi:10.1016/j.conbuildmat.2013.11.065.

Celik, K., Jackson, M. D., Mancio, M., Meral, C., Emwas, A. H., Mehta, P. K., & Monteiro, P. J. M. (2014). High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete. Cement and Concrete Composites, 45, 136–147. doi:10.1016/j.cemconcomp.2013.09.003.

Kotynia, R., Szczech, D., & Kaszubska, M. (2017). Bond Behavior of GRFP Bars to Concrete in Beam Test. Procedia Engineering, 193, 401–408. doi:10.1016/j.proeng.2017.06.230.

Meraz, M. M., Sobuz, Md. H. R., Mim, N. J., Ali, A., Islam, Md. S., Safayet, Md. A., & Mehedi, Md. T. (2023). Using rice husk ash to imitate the properties of silica fume in high-performance fiber-reinforced concrete (HPFRC): A comprehensive durability and life-cycle evaluation. Journal of Building Engineering, 76, 107219. doi:10.1016/j.jobe.2023.107219.

Jittin, V., & Bahurudeen, A. (2022). Evaluation of rheological and durability characteristics of sugarcane bagasse ash and rice husk ash based binary and ternary cementitious system. Construction and Building Materials, 317, 125965. doi:10.1016/j.conbuildmat.2021.125965.

Pachla, E. C., Silva, D. B., Stein, K. J., Marangon, E., & Chong, W. (2021). Sustainable application of rice husk and rice straw in cellular concrete composites. Construction and Building Materials, 283, 122770. doi:10.1016/j.conbuildmat.2021.122770.

Zhu, H., Zhai, M., Liang, G., Li, H., Wu, Q., Zhang, C., & Hua, S. (2021). Experimental study on the freezing resistance and microstructure of alkali-activated slag in the presence of rice husk ash. Journal of Building Engineering, 38, 102173. doi:10.1016/j.jobe.2021.102173.

El-Sayed, T. A., & Algash, Y. A. (2021). Flexural behavior of ultra-high performance geopolymer RC beams reinforced with GFRP bars. Case Studies in Construction Materials, 15, e00604. doi:10.1016/j.cscm.2021.e00604.

Carrillo, J., Calixto-Vargas, J., & Burgos, E. A. (2024). Shear behavior of concrete panels reinforced with GFRP bars under cyclic diagonal tension tests. Engineering Structures, 302, 117340. doi:10.1016/j.engstruct.2023.117340.

Vinod Kumar, M., Siddaramaiah, Y. M., & Jebamalai Raj, S. (2022). Shear behaviour of GFRP retrofitted spiral transverse reinforced concrete beams with partially replaced recycled aggregates. Materials Today: Proceedings, 65, 1642–1650. doi:10.1016/j.matpr.2022.04.700.

Ali, H., Assih, J., & Li, A. (2021). Flexural capacity of continuous reinforced concrete beams strengthened or repaired by CFRP/GFRP sheets. International Journal of Adhesion and Adhesives, 104, 102759. doi:10.1016/j.ijadhadh.2020.102759.

Prasad, R., & Pandey, M. (2012). Rice Husk Ash as a Renewable Source for the Production of Value Added Silica Gel and its Application: An Overview. Bulletin of Chemical Reaction Engineering & Catalysis, 7(1), 1–25. doi:10.9767/bcrec.7.1.1216.1-25.

Real, C., Alcala, M. D., & Criado, J. M. (1996). ChemInform Abstract: Preparation of Silica from Rice Husks. ChemInform, 27(49). doi:10.1002/chin.199649266.

Liou, T. H., & Yang, C. C. (2011). Synthesis and surface characteristics of nanosilica produced from alkali-extracted rice husk ash. Materials Science and Engineering: B, 176(7), 521–529. doi:10.1016/j.mseb.2011.01.007.

ASTM C192/C192M-19.(2024). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, Pennsylvania, United States. doi:10.1520/C0192_C0192M-19.

Gerges, N. N., Issa, C. A., & Fawaz, S. (2015). Effect of construction joints on the splitting tensile strength of concrete. Case Studies in Construction Materials, 3, 83–91. doi:10.1016/j.cscm.2015.07.001.

ACI Committee 318. (2019). ACI 318-19: Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute, Michigan, United States.

Chou, J. S., Liu, C. Y., Prayogo, H., Khasani, R. R., Gho, D., & Lalitan, G. G. (2022). Predicting nominal shear capacity of reinforced concrete wall in building by metaheuristics-optimized machine learning. Journal of Building Engineering, 61, 10504. doi:10.1016/j.jobe.2022.105046.

Bixapathi, G., & Saravanan, M. (2022). Strength and durability of concrete using Rice Husk ash as a partial replacement of cement. Materials Today: Proceedings, 52, 1606–1610. doi:10.1016/j.matpr.2021.11.267.

Nasir Amin, M., Ur Rehman, K., Shahzada, K., Khan, K., Wahab, N., & Abdulalim Alabdullah, A. (2022). Mechanical and microstructure performance and global warming potential of blended concrete containing rice husk ash and silica fume. Construction and Building Materials, 346, 128470. doi:10.1016/j.conbuildmat.2022.128470.

Díaz, A. G., Bueno, S., Villarejo, L. P., & Eliche-Quesada, D. (2024). Improved strength of alkali activated materials based on construction and demolition waste with addition of rice husk ash. Construction and Building Materials, 413, 134823. doi:10.1016/j.conbuildmat.2023.134823.

Onyenokporo, N. C., Taki, A., Montalvo, L. Z., & Oyinlola, M. (2023). Thermal performance characterization of cement-based masonry blocks incorporating rice husk ash. Construction and Building Materials, 398, 132481. doi:10.1016/j.conbuildmat.2023.132481.

Rahimi, M. Z., Zhao, R., Sadozai, S., Zhu, F., Ji, N., & Xu, L. (2023). Research on the influence of curing strategies on the compressive strength and hardening behaviour of concrete prepared with Ordinary Portland Cement. Case Studies in Construction Materials, 18, 2045. doi:10.1016/j.cscm.2023.e02045.

Al-Amoudi, O. S. B., Maslehuddin, M., Ibrahim, M., Shameem, M., & Al-Mehthel, M. H. (2011). Performance of blended cement concretes prepared with constant workability. Cement and Concrete Composites, 33(1), 90–102. doi:10.1016/j.cemconcomp.2010.10.004.

Liu, S., Zhou, Y., Zhou, J., Zhang, B., Jin, F., Zheng, Q., & Fan, H. (2019). Blast responses of concrete beams reinforced with GFRP bars: Experimental research and equivalent static analysis. Composite Structures, 226, 111271. doi:10.1016/j.compstruct.2019.111271.

Doostmohamadi, A., Shakiba, M., Bazli, M., Ebrahimzadeh, M., & Arashpour, M. (2023). Enhancement of bond characteristics between sand-coated GFRP bar and normal weight and light-weight concrete using an innovative anchor. Engineering Structures, 294, 116780. doi:10.1016/j.engstruct.2023.116780.

Manoj, T., Mrudhul varma, B., & Seshagiri rao, M. V. (2023). Performance evaluation of conventional and lightweight concrete using GFRP sheets at elevated temperature. Materials Today: Proceedings, 1-7. doi:10.1016/j.matpr.2023.05.115.

Doostmohamadi, A., Karamloo, M., & Afzali-Naniz, O. (2020). Effect of polyolefin macro fibers and handmade GFRP anchorage system on improving the bonding behavior of GFRP bars embedded in self-compacting lightweight concrete. Construction and Building Materials, 253, 119230. doi:10.1016/j.conbuildmat.2020.119230.

Yang, X., Liu, Y., Wang, Y. F., & Zhang, J. (2024). Performance of steel tube reinforced concrete-filled weathering steel tubular members under lateral impact loading. Journal of Constructional Steel Research, 213, 108382. doi:10.1016/j.jcsr.2023.108382.

Zheng, Y., Su, Z., Li, J., Wang, Z., Xu, Y., Li, X., & Che, P. (2024). Energy transfer efficiency and rock damage characteristics of a hydraulic impact hammer with different tool shapes. International Journal of Impact Engineering, 188, 104933. doi:10.1016/j.ijimpeng.2024.104933.

Cai, X., Zhang, X., Lu, Y., Noori, A., Han, S., & Chen, L. (2024). A novel braided bamboo composite material with balanced strength and good energy absorption capacity inspired by bamboo. Construction and Building Materials, 421, 135652. doi:10.1016/j.conbuildmat.2024.135652.

Mou, B., Liu, X., Zhao, O., & Xiao, H. (2023). Dynamic response of concrete-filled square steel tubular columns under lateral impact load at flat or corner zone. Engineering Structures, 292, 116319. doi:10.1016/j.engstruct.2023.116319.

Mostofinejad, D., Aghamohammadi, O., Bahmani, H., & Ebrahimi, S. (2023). Improving thermal characteristics and energy absorption of concrete by recycled rubber and silica fume. Developments in the Built Environment, 16, 100221. doi:10.1016/j.dibe.2023.100221.

Alam, A., & Hu, J. (2023). Mechanical properties and energy absorption capacity of plain and fiber-reinforced single- and multi-layer cellular concrete. Construction and Building Materials, 394, 132154. doi:10.1016/j.conbuildmat.2023.132154.

Kumar, V., Iqbal, M. A., & Mittal, A. K. (2018). Study of induced prestress on deformation and energy absorption characteristics of concrete slabs under drop impact loading. Construction and Building Materials, 188, 656–675. doi:10.1016/j.conbuildmat.2018.08.113.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-02-020

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Piyorus Tasenhog, Kunanon Sakkampang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message