River Sand Replacement with Sustainable Sand in Design Mix Concrete for the Construction Industry
Abstract
Doi: 10.28991/CEJ-2025-011-01-012
Full Text: PDF
Keywords
References
Bendixen, M., Best, J., Hackney, C., & Iversen, L. L. (2019). Time is running out for sand. Nature, 571(7763), 29–31. doi:10.1038/d41586-019-02042-4.
Zhang, T., Zhu, Q., Liu, H., & Gao, S. (2024). Utilization of coal gangue sand in structural concrete as fine aggregate towards sustainable production. Construction and Building Materials, 417, 135264. doi:10.1016/j.conbuildmat.2024.135264.
Mehta, V. (2024). Sustainable approaches in concrete production: An in-depth review of waste foundry sand utilization and environmental considerations. Environmental Science and Pollution Research, 31(16), 23435–23461. doi:10.1007/s11356-024-32785-1.
Akhtar, M. N., Bani-Hani, K. A., Malkawi, D. A. H., & Albatayneh, O. (2024). Suitability of sustainable sand for concrete manufacturing - A complete review of recycled and desert sand substitution. Results in Engineering, 23, 102478. doi:10.1016/j.rineng.2024.102478.
Saini, A., Soni, H., & Yadav, J. S. (2024). Utilization of recycled construction and demolition waste to improve the bearing capacity of loose sand: an integrated experimental and numerical study. Geomechanics and Geoengineering, 19(4), 444–461. doi:10.1080/17486025.2023.2288925.
Monier, V., Mudgal, S., Hestin, M., Trarieux, M., & Mimid, S. (2011). Service contract on management of construction and demolition waste–SR1. Final Report Task 2. European Commission DG ENV, Brussels, Belgium.
Sáez, P. V., Merino, M. D. R., & Porras-Amores, C. (2011). Managing construction and demolition (C&D) waste–a European perspective. International Conference on Petroleum and Sustainable Development, 28-30 December, 2011, Dubai, United Arab Emirates.
Mistri, A., Bhattacharyya, S. K., Dhami, N., Mukherjee, A., & Barai, S. V. (2020). A review on different treatment methods for enhancing the properties of recycled aggregates for sustainable construction materials. Construction and Building Materials, 233, 117894. doi:10.1016/j.conbuildmat.2019.117894.
Akhtar, J. N., & Akhtar, M. N. (2014). Enhancement in properties of concrete with demolished waste aggregate. GE-International Journal of Engineering Research, 2(9), 73-83.
Panghal, H., & Kumar, A. (2024). Recycled Coarse Aggregates in Concrete: A Comprehensive Study of Mechanical and Microstructural Properties. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 1–17. doi:10.1007/s40996-024-01539-x.
Luo, H., Aguiar, J., Wan, X., Wang, Y., Cunha, S., & Jia, Z. (2024). Application of Aggregates from Construction and Demolition Wastes in Concrete: Review. Sustainability (Switzerland), 16(10), 4277. doi:10.3390/su16104277.
Monish, M., Srivastava, V., Agarwal, V. C., & Kumar, R. (2012). Utilization of demolished waste as fine aggregate in Concrete. Journal of Academia and Industrial Research, 1(7), 398-400.
Ju, M., Jeong, J. G., Palou, M., & Park, K. (2020). Mechanical behavior of fine recycled concrete aggregate concrete with the mineral admixtures. Materials, 13(10), 2264. doi:10.3390/ma13102264.
Akhtar, M. N., Jameel, M., Ibrahim, Z., & Muhamad Bunnori, N. (2024). Assessment of structural concrete made by sustainable sand at high temperatures: An experimental research. Ain Shams Engineering Journal, 103108. doi:10.1016/j.asej.2024.103108.
Akhtar, M. N., Jameel, M., Ibrahim, Z., Muhamad Bunnori, N., & Bani-Hani, K. A. (2024). Development of sustainable modified sand concrete: An experimental study. Ain Shams Engineering Journal, 15(1), 102331. doi:10.1016/j.asej.2023.102331.
Wang, C. Q., Cheng, L. X., Ying, Y., & Yang, F. H. (2024). Utilization of all components of waste concrete: Recycled aggregate strengthening, recycled fine powder activity, composite recycled concrete and life cycle assessment. Journal of Building Engineering, 82, 108255. doi:10.1016/j.jobe.2023.108255.
Shah, M. M., Khalid, U., Mujtaba, H., Naqvi, S. A. Z., & Masood, S. (2024). Environmental impacts and performance assessment of recycled fine aggregate concrete. Environmental Science and Pollution Research, 31(25), 36938–36957. doi:10.1007/s11356-024-33590-6.
Lu, D., Qu, F., Su, Y., & Cui, K. (2024). Nano-engineered the interfacial transition zone between recycled fine aggregates and paste with graphene oxide for sustainable cement composites. Cement and Concrete Composites, 154, 105762. doi:10.1016/j.cemconcomp.2024.105762.
Akhtar, M. N., Ibrahim, Z., Bunnori, N. M., Jameel, M., Tarannum, N., & Akhtar, J. N. (2021). Performance of sustainable sand concrete at ambient and elevated temperature. Construction and Building Materials, 280, 122404. doi:10.1016/j.conbuildmat.2021.122404.
Akhtar, M. N., Albatayneh, O., Bani-Hani, K. A., & Husein Malkawi, A. I. (2024). Performance of modified desert sand concrete: An experimental case study. Case Studies in Construction Materials, 21, 3465. doi:10.1016/j.cscm.2024.e03465.
Ji, Y., Qasem, M. G. S., Xu, T., & Mohammed, A. O. Y. (2024). Mechanical properties investigation on recycled rubber desert sand concrete. Journal of CO2 Utilization, 88, 102939. doi:10.1016/j.jcou.2024.102939.
Kazmi, S. M. S., Munir, M. J., & Wu, Y. F. (2025). Development of sustainable high-performance desert sand concrete: Engineering and environmental impacts of compression casting. Resources, Conservation and Recycling, 212, 108002. doi:10.1016/j.resconrec.2024.108002.
Hou, M., Li, Z., & Li, V. C. (2024). Green and durable engineered cementitious composites (GD-ECC) with recycled PE fiber, desert sand, and carbonation curing: Mixture design, durability performance, and life-cycle analysis. Construction and Building Materials, 414, 134984. doi:10.1016/j.conbuildmat.2024.134984.
Hamada, H. M., Abed, F., Al-Sadoon, Z. A., Elnassar, Z., & Hassan, A. (2023). The use of treated desert sand in sustainable concrete: A mechanical and microstructure study. Journal of Building Engineering, 79, 107843. doi:10.1016/j.jobe.2023.107843.
Manjunatha, M., Suresh, N., Bindiganavile, V., Rao, V., & Shivaswamy, S. (2024). Effect of sustained elevated temperature on compression and split-tensile properties of concrete made with waste foundry sand. Journal of Structural Fire Engineering. doi:10.1108/JSFE-08-2024-0028.
Williams, K. C., & Partheeban, P. (2018). An experimental and numerical approach in strength prediction of reclaimed rubber concrete. Advances in Concrete Construction, 6(1), 87–102. doi:10.12989/acc.2018.6.1.087.
Wu, H., Chen, G., Liu, C., & Gao, J. (2024). Understanding the micro-macro properties of sustainable ultra-high performance concrete incorporating high-volume recycled brick powder as cement and silica fume replacement. Construction and Building Materials, 448, 138170. doi:10.1016/j.conbuildmat.2024.138170.
Benemaran, R. S., Esmaeili-Falak, M., & Kordlar, M. S. (2024). Improvement of recycled aggregate concrete using glass fiber and silica fume. Multiscale and Multidisciplinary Modeling, Experiments and Design, 7(3), 1895–1914. doi:10.1007/s41939-023-00313-2.
Nisar Akhtar, J., Ahmad Khan, R., Ahmad Khan, R., Nadeem Akhtar, M., & Thomas, B. S. (2023). A comparative study of strength and durability characteristics of concrete and mortar admixture by bacterial calcite precipitation: A review. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.03.490.
Akhtar, M. N., Jameel, M., Ibrahim, Z., & Bunnori, N. M. (2022). Incorporation of recycled aggregates and silica fume in concrete: an environmental savior-a systematic review. Journal of Materials Research and Technology, 20, 4525–4544. doi:10.1016/j.jmrt.2022.09.021.
Alhajiri, A. M., & Akhtar, M. N. (2023). Enhancing Sustainability and Economics of Concrete Production through Silica Fume: A Systematic Review. Civil Engineering Journal (Iran), 9(10), 2612–2629. doi:10.28991/CEJ-2023-09-10-017.
Uddin, M. A., Bashir, M. T., Khan, A. M., Alsharari, F., Farid, F., & Alrowais, R. (2024). Effect of Silica Fume on Compressive Strength and Water Absorption of the Portland Cement–Silica Fume Blended Mortar. Arabian Journal for Science and Engineering, 49(4), 4803–4811. doi:10.1007/s13369-023-08204-x.
Kumar, A., Jail Singh, G., Chauhan, B. L., & Kumar, R. (2024). Strength and Durability Performance of Recycled Aggregate Structural Concrete with Silica Fume, Furnace Slag, and M-Fine. Journal of Materials in Civil Engineering, 36(7), 4024165. doi:10.1061/jmcee7.mteng-17547.
Alkhrissat, T. (2024). Impact of adding waste polyethylene (PE) and silica fume (SF) on the engineering properties of cement mortar. Case Studies in Chemical and Environmental Engineering, 9, 100731. doi:10.1016/j.cscee.2024.100731.
Etli, S. (2023). Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate. Journal of Cleaner Production, 384, 135590. doi:10.1016/j.jclepro.2022.135590.
Mehta, A., & Ashish, D. K. (2020). Silica fume and waste glass in cement concrete production: A review. Journal of Building Engineering, 29, 100888. doi:10.1016/j.jobe.2019.100888.
Ashish, D. K., & Verma, S. K. (2019). An overview on mixture design of self-compacting concrete. Structural Concrete, 20(1), 371–395. doi:10.1002/suco.201700279.
Akhtar, M. N., Hattamleh, O., & Akhtar, J. N. (2017). Feasibility of coal fly ash based bricks and roof tiles as construction materials: a review. MATEC Web of Conferences, 120, 03008. doi:10.1051/matecconf/201712003008.
Long, W. J., Peng, J. K., Gu, Y. C., Li, J. L., Dong, B., Xing, F., & Fang, Y. (2021). Recycled use of municipal solid waste incinerator fly ash and ferronickel slag for eco-friendly mortar through geopolymer technology. Journal of Cleaner Production, 307, 127281. doi:10.1016/j.jclepro.2021.127281.
ACI-318. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute (ACI), Michigan, United States.
Klee, H., & Coles, E. (2004). The cement sustainability initiative – implementing change across a global industry. Corporate Social Responsibility and Environmental Management, 11(2), 114–120. doi:10.1002/csr.59.
Coelho, A., & De Brito, J. (2011). Economic analysis of conventional versus selective demolition - A case study. Resources, Conservation and Recycling, 55(3), 382–392. doi:10.1016/j.resconrec.2010.11.003.
Ulsen, C., Tseng, E., Angulo, S. C., Landmann, M., Contessotto, R., Balbo, J. T., & Kahn, H. (2019). Concrete aggregates properties crushed by jaw and impact secondary crushing. Journal of Materials Research and Technology, 8(1), 494–502. doi:10.1016/j.jmrt.2018.04.008.
Gebremariam, A. T., Di Maio, F., Vahidi, A., & Rem, P. (2020). Innovative technologies for recycling End-of-Life concrete waste in the built environment. Resources, Conservation and Recycling, 163, 104911. doi:10.1016/j.resconrec.2020.104911.
ASTM C128-22. (2022). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-22.
Aldayel Aldossary, M. H., Ahmad, S., & Bahraq, A. A. (2020). Effect of total dissolved solids-contaminated water on the properties of concrete. Journal of Building Engineering, 32, 101496. doi:10.1016/j.jobe.2020.101496.
Su, N., Miao, B., & Liu, F. S. (2002). Effect of wash water and underground water on properties of concrete. Cement and Concrete Research, 32(5), 777–782. doi:10.1016/S0008-8846(01)00762-1.
BS-3148. (1980). Method for test for water for making concrete. British standard institute, London, United Kingdom.
ACI 211.1-91. (1991) Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. American Concrete Institute (ACI), Michigan, United States.
ASTM C136-09. (2014). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0136-06.
Arhras, G., & Foo, H. C. (1994). A knowledge-based system for selecting proportions for normal concrete. Expert Systems with Applications, 7(2), 323-335. doi:10.1016/0957-4174(94)90047-7.
ASTM C31/C31M-19a. (2016). Standard Practice for Making and Curing Concrete Test Specimens in the Field. ASTM International, Pennsylvania, United States. doi:10.1520/C0031_C0031M-19A.
Akhtar, M. N., & Akhtar, J. N. (2018). Suitability of Class F Flyash for Construction Industry: An Indian Scenario. International Journal of Structural and Construction Engineering, 12(9), 892-897.
Sithole, N. T., Tsotetsi, N. T., Mashifana, T., & Sillanpää, M. (2022). Alternative cleaner production of sustainable concrete from waste foundry sand and slag. Journal of Cleaner Production, 336, 130399. doi:10.1016/j.jclepro.2022.130399.
ACI-214R-11. (2011). Guide to evaluation of strength test results of concrete. American Concrete Institute, American Concrete Institute (ACI), Michigan, United States.
Moulay-Ali, A., Abdeldjalil, M., & Khelafi, H. (2021). An experimental study on the optimal compositions of ordinary concrete based on corrected dune sand—Case of granular range of 25 mm. Case Studies in Construction Materials, 14, 521. doi:10.1016/j.cscm.2021.e00521.
Abu Seif, E. S. S., Sonbul, A. R., Hakami, B. A. H., & El-Sawy, E. K. (2016). Experimental study on the utilization of dune sands as a construction material in the area between Jeddah and Mecca, Western Saudi Arabia. Bulletin of Engineering Geology and the Environment, 75(3), 1007–1022. doi:10.1007/s10064-016-0855-9.
Sabih, G., Tarefder, R. A., & Jamil, S. M. (2016). Optimization of Gradation and Fineness Modulus of Naturally Fine Sands for Improved Performance as Fine Aggregate in Concrete. Procedia Engineering, 145, 66–73. doi:10.1016/j.proeng.2016.04.016.
ASTM C496/C496M-04e1. (2011). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-04E01.
Rais, M. S., & Khan, R. A. (2020). Strength and durability characteristics of binary blended recycled coarse aggregate concrete containing microsilica and metakaolin. Innovative Infrastructure Solutions, 5(3). doi:10.1007/s41062-020-00365-0.
DOI: 10.28991/CEJ-2025-011-01-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Mohammad Nadeem Akhtar

This work is licensed under a Creative Commons Attribution 4.0 International License.