River Sand Replacement with Sustainable Sand in Design Mix Concrete for the Construction Industry

Mohammad N. Akhtar, Abdulaziz Alotaibi, Nadim I. Shbeeb

Abstract


The present study prepared four sustainable design mixes of concrete using desert sand, modified recycled sand, and supplementary cementitious material silica fume to replace cement. The design mix concrete was prepared using the absolute volume method of a design strength (f´c) and target strength (cr)of 30 MPa and 38 MPa, respectively. The analysis of results showed that the four sustainable design mix concrete successfully passed the strength criterion set by the ACI 318-19 building code. The resulting pattern shows an increment in the mechanical and durability properties compared to the reference mix when (50% desert sand + 50% recycled crushed sand) is combined with 5-12.5% silica fume. The optimum result was achieved when the optimized, sustainable sand ratio (50% desert sand + 50% recycled crushed sand) was combined with 10% silica fume. It can be concluded that the prepared concrete has excellent results in terms of concrete strength and durability properties. Furthermore, this study shows that 100% of natural sand and 10% of cement can be saved using the optimal proposed concrete design mix. This study would have explored sustainability in the Saudi region by utilizing a vast percentage of vacant desert sand in concrete manufacturing.

 

Doi: 10.28991/CEJ-2025-011-01-012

Full Text: PDF


Keywords


Silica Fume; Desert Sand; Recycled Sand; Sustainable Concrete; Absolute Volume Method.

References


Bendixen, M., Best, J., Hackney, C., & Iversen, L. L. (2019). Time is running out for sand. Nature, 571(7763), 29–31. doi:10.1038/d41586-019-02042-4.

Zhang, T., Zhu, Q., Liu, H., & Gao, S. (2024). Utilization of coal gangue sand in structural concrete as fine aggregate towards sustainable production. Construction and Building Materials, 417, 135264. doi:10.1016/j.conbuildmat.2024.135264.

Mehta, V. (2024). Sustainable approaches in concrete production: An in-depth review of waste foundry sand utilization and environmental considerations. Environmental Science and Pollution Research, 31(16), 23435–23461. doi:10.1007/s11356-024-32785-1.

Akhtar, M. N., Bani-Hani, K. A., Malkawi, D. A. H., & Albatayneh, O. (2024). Suitability of sustainable sand for concrete manufacturing - A complete review of recycled and desert sand substitution. Results in Engineering, 23, 102478. doi:10.1016/j.rineng.2024.102478.

Saini, A., Soni, H., & Yadav, J. S. (2024). Utilization of recycled construction and demolition waste to improve the bearing capacity of loose sand: an integrated experimental and numerical study. Geomechanics and Geoengineering, 19(4), 444–461. doi:10.1080/17486025.2023.2288925.

Monier, V., Mudgal, S., Hestin, M., Trarieux, M., & Mimid, S. (2011). Service contract on management of construction and demolition waste–SR1. Final Report Task 2. European Commission DG ENV, Brussels, Belgium.

Sáez, P. V., Merino, M. D. R., & Porras-Amores, C. (2011). Managing construction and demolition (C&D) waste–a European perspective. International Conference on Petroleum and Sustainable Development, 28-30 December, 2011, Dubai, United Arab Emirates.

Mistri, A., Bhattacharyya, S. K., Dhami, N., Mukherjee, A., & Barai, S. V. (2020). A review on different treatment methods for enhancing the properties of recycled aggregates for sustainable construction materials. Construction and Building Materials, 233, 117894. doi:10.1016/j.conbuildmat.2019.117894.

Akhtar, J. N., & Akhtar, M. N. (2014). Enhancement in properties of concrete with demolished waste aggregate. GE-International Journal of Engineering Research, 2(9), 73-83.

Panghal, H., & Kumar, A. (2024). Recycled Coarse Aggregates in Concrete: A Comprehensive Study of Mechanical and Microstructural Properties. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 1–17. doi:10.1007/s40996-024-01539-x.

Luo, H., Aguiar, J., Wan, X., Wang, Y., Cunha, S., & Jia, Z. (2024). Application of Aggregates from Construction and Demolition Wastes in Concrete: Review. Sustainability (Switzerland), 16(10), 4277. doi:10.3390/su16104277.

Monish, M., Srivastava, V., Agarwal, V. C., & Kumar, R. (2012). Utilization of demolished waste as fine aggregate in Concrete. Journal of Academia and Industrial Research, 1(7), 398-400.

Ju, M., Jeong, J. G., Palou, M., & Park, K. (2020). Mechanical behavior of fine recycled concrete aggregate concrete with the mineral admixtures. Materials, 13(10), 2264. doi:10.3390/ma13102264.

Akhtar, M. N., Jameel, M., Ibrahim, Z., & Muhamad Bunnori, N. (2024). Assessment of structural concrete made by sustainable sand at high temperatures: An experimental research. Ain Shams Engineering Journal, 103108. doi:10.1016/j.asej.2024.103108.

Akhtar, M. N., Jameel, M., Ibrahim, Z., Muhamad Bunnori, N., & Bani-Hani, K. A. (2024). Development of sustainable modified sand concrete: An experimental study. Ain Shams Engineering Journal, 15(1), 102331. doi:10.1016/j.asej.2023.102331.

Wang, C. Q., Cheng, L. X., Ying, Y., & Yang, F. H. (2024). Utilization of all components of waste concrete: Recycled aggregate strengthening, recycled fine powder activity, composite recycled concrete and life cycle assessment. Journal of Building Engineering, 82, 108255. doi:10.1016/j.jobe.2023.108255.

Shah, M. M., Khalid, U., Mujtaba, H., Naqvi, S. A. Z., & Masood, S. (2024). Environmental impacts and performance assessment of recycled fine aggregate concrete. Environmental Science and Pollution Research, 31(25), 36938–36957. doi:10.1007/s11356-024-33590-6.

Lu, D., Qu, F., Su, Y., & Cui, K. (2024). Nano-engineered the interfacial transition zone between recycled fine aggregates and paste with graphene oxide for sustainable cement composites. Cement and Concrete Composites, 154, 105762. doi:10.1016/j.cemconcomp.2024.105762.

Akhtar, M. N., Ibrahim, Z., Bunnori, N. M., Jameel, M., Tarannum, N., & Akhtar, J. N. (2021). Performance of sustainable sand concrete at ambient and elevated temperature. Construction and Building Materials, 280, 122404. doi:10.1016/j.conbuildmat.2021.122404.

Akhtar, M. N., Albatayneh, O., Bani-Hani, K. A., & Husein Malkawi, A. I. (2024). Performance of modified desert sand concrete: An experimental case study. Case Studies in Construction Materials, 21, 3465. doi:10.1016/j.cscm.2024.e03465.

Ji, Y., Qasem, M. G. S., Xu, T., & Mohammed, A. O. Y. (2024). Mechanical properties investigation on recycled rubber desert sand concrete. Journal of CO2 Utilization, 88, 102939. doi:10.1016/j.jcou.2024.102939.

Kazmi, S. M. S., Munir, M. J., & Wu, Y. F. (2025). Development of sustainable high-performance desert sand concrete: Engineering and environmental impacts of compression casting. Resources, Conservation and Recycling, 212, 108002. doi:10.1016/j.resconrec.2024.108002.

Hou, M., Li, Z., & Li, V. C. (2024). Green and durable engineered cementitious composites (GD-ECC) with recycled PE fiber, desert sand, and carbonation curing: Mixture design, durability performance, and life-cycle analysis. Construction and Building Materials, 414, 134984. doi:10.1016/j.conbuildmat.2024.134984.

Hamada, H. M., Abed, F., Al-Sadoon, Z. A., Elnassar, Z., & Hassan, A. (2023). The use of treated desert sand in sustainable concrete: A mechanical and microstructure study. Journal of Building Engineering, 79, 107843. doi:10.1016/j.jobe.2023.107843.

Manjunatha, M., Suresh, N., Bindiganavile, V., Rao, V., & Shivaswamy, S. (2024). Effect of sustained elevated temperature on compression and split-tensile properties of concrete made with waste foundry sand. Journal of Structural Fire Engineering. doi:10.1108/JSFE-08-2024-0028.

Williams, K. C., & Partheeban, P. (2018). An experimental and numerical approach in strength prediction of reclaimed rubber concrete. Advances in Concrete Construction, 6(1), 87–102. doi:10.12989/acc.2018.6.1.087.

Wu, H., Chen, G., Liu, C., & Gao, J. (2024). Understanding the micro-macro properties of sustainable ultra-high performance concrete incorporating high-volume recycled brick powder as cement and silica fume replacement. Construction and Building Materials, 448, 138170. doi:10.1016/j.conbuildmat.2024.138170.

Benemaran, R. S., Esmaeili-Falak, M., & Kordlar, M. S. (2024). Improvement of recycled aggregate concrete using glass fiber and silica fume. Multiscale and Multidisciplinary Modeling, Experiments and Design, 7(3), 1895–1914. doi:10.1007/s41939-023-00313-2.

Nisar Akhtar, J., Ahmad Khan, R., Ahmad Khan, R., Nadeem Akhtar, M., & Thomas, B. S. (2023). A comparative study of strength and durability characteristics of concrete and mortar admixture by bacterial calcite precipitation: A review. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.03.490.

Akhtar, M. N., Jameel, M., Ibrahim, Z., & Bunnori, N. M. (2022). Incorporation of recycled aggregates and silica fume in concrete: an environmental savior-a systematic review. Journal of Materials Research and Technology, 20, 4525–4544. doi:10.1016/j.jmrt.2022.09.021.

Alhajiri, A. M., & Akhtar, M. N. (2023). Enhancing Sustainability and Economics of Concrete Production through Silica Fume: A Systematic Review. Civil Engineering Journal (Iran), 9(10), 2612–2629. doi:10.28991/CEJ-2023-09-10-017.

Uddin, M. A., Bashir, M. T., Khan, A. M., Alsharari, F., Farid, F., & Alrowais, R. (2024). Effect of Silica Fume on Compressive Strength and Water Absorption of the Portland Cement–Silica Fume Blended Mortar. Arabian Journal for Science and Engineering, 49(4), 4803–4811. doi:10.1007/s13369-023-08204-x.

Kumar, A., Jail Singh, G., Chauhan, B. L., & Kumar, R. (2024). Strength and Durability Performance of Recycled Aggregate Structural Concrete with Silica Fume, Furnace Slag, and M-Fine. Journal of Materials in Civil Engineering, 36(7), 4024165. doi:10.1061/jmcee7.mteng-17547.

Alkhrissat, T. (2024). Impact of adding waste polyethylene (PE) and silica fume (SF) on the engineering properties of cement mortar. Case Studies in Chemical and Environmental Engineering, 9, 100731. doi:10.1016/j.cscee.2024.100731.

Etli, S. (2023). Evaluation of the effect of silica fume on the fresh, mechanical and durability properties of self-compacting concrete produced by using waste rubber as fine aggregate. Journal of Cleaner Production, 384, 135590. doi:10.1016/j.jclepro.2022.135590.

Mehta, A., & Ashish, D. K. (2020). Silica fume and waste glass in cement concrete production: A review. Journal of Building Engineering, 29, 100888. doi:10.1016/j.jobe.2019.100888.

Ashish, D. K., & Verma, S. K. (2019). An overview on mixture design of self-compacting concrete. Structural Concrete, 20(1), 371–395. doi:10.1002/suco.201700279.

Akhtar, M. N., Hattamleh, O., & Akhtar, J. N. (2017). Feasibility of coal fly ash based bricks and roof tiles as construction materials: a review. MATEC Web of Conferences, 120, 03008. doi:10.1051/matecconf/201712003008.

Long, W. J., Peng, J. K., Gu, Y. C., Li, J. L., Dong, B., Xing, F., & Fang, Y. (2021). Recycled use of municipal solid waste incinerator fly ash and ferronickel slag for eco-friendly mortar through geopolymer technology. Journal of Cleaner Production, 307, 127281. doi:10.1016/j.jclepro.2021.127281.

ACI-318. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute (ACI), Michigan, United States.

Klee, H., & Coles, E. (2004). The cement sustainability initiative – implementing change across a global industry. Corporate Social Responsibility and Environmental Management, 11(2), 114–120. doi:10.1002/csr.59.

Coelho, A., & De Brito, J. (2011). Economic analysis of conventional versus selective demolition - A case study. Resources, Conservation and Recycling, 55(3), 382–392. doi:10.1016/j.resconrec.2010.11.003.

Ulsen, C., Tseng, E., Angulo, S. C., Landmann, M., Contessotto, R., Balbo, J. T., & Kahn, H. (2019). Concrete aggregates properties crushed by jaw and impact secondary crushing. Journal of Materials Research and Technology, 8(1), 494–502. doi:10.1016/j.jmrt.2018.04.008.

Gebremariam, A. T., Di Maio, F., Vahidi, A., & Rem, P. (2020). Innovative technologies for recycling End-of-Life concrete waste in the built environment. Resources, Conservation and Recycling, 163, 104911. doi:10.1016/j.resconrec.2020.104911.

ASTM C128-22. (2022). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-22.

Aldayel Aldossary, M. H., Ahmad, S., & Bahraq, A. A. (2020). Effect of total dissolved solids-contaminated water on the properties of concrete. Journal of Building Engineering, 32, 101496. doi:10.1016/j.jobe.2020.101496.

Su, N., Miao, B., & Liu, F. S. (2002). Effect of wash water and underground water on properties of concrete. Cement and Concrete Research, 32(5), 777–782. doi:10.1016/S0008-8846(01)00762-1.

BS-3148. (1980). Method for test for water for making concrete. British standard institute, London, United Kingdom.

ACI 211.1-91. (1991) Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. American Concrete Institute (ACI), Michigan, United States.

ASTM C136-09. (2014). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0136-06.

Arhras, G., & Foo, H. C. (1994). A knowledge-based system for selecting proportions for normal concrete. Expert Systems with Applications, 7(2), 323-335. doi:10.1016/0957-4174(94)90047-7.

ASTM C31/C31M-19a. (2016). Standard Practice for Making and Curing Concrete Test Specimens in the Field. ASTM International, Pennsylvania, United States. doi:10.1520/C0031_C0031M-19A.

Akhtar, M. N., & Akhtar, J. N. (2018). Suitability of Class F Flyash for Construction Industry: An Indian Scenario. International Journal of Structural and Construction Engineering, 12(9), 892-897.

Sithole, N. T., Tsotetsi, N. T., Mashifana, T., & Sillanpää, M. (2022). Alternative cleaner production of sustainable concrete from waste foundry sand and slag. Journal of Cleaner Production, 336, 130399. doi:10.1016/j.jclepro.2022.130399.

ACI-214R-11. (2011). Guide to evaluation of strength test results of concrete. American Concrete Institute, American Concrete Institute (ACI), Michigan, United States.

Moulay-Ali, A., Abdeldjalil, M., & Khelafi, H. (2021). An experimental study on the optimal compositions of ordinary concrete based on corrected dune sand—Case of granular range of 25 mm. Case Studies in Construction Materials, 14, 521. doi:10.1016/j.cscm.2021.e00521.

Abu Seif, E. S. S., Sonbul, A. R., Hakami, B. A. H., & El-Sawy, E. K. (2016). Experimental study on the utilization of dune sands as a construction material in the area between Jeddah and Mecca, Western Saudi Arabia. Bulletin of Engineering Geology and the Environment, 75(3), 1007–1022. doi:10.1007/s10064-016-0855-9.

Sabih, G., Tarefder, R. A., & Jamil, S. M. (2016). Optimization of Gradation and Fineness Modulus of Naturally Fine Sands for Improved Performance as Fine Aggregate in Concrete. Procedia Engineering, 145, 66–73. doi:10.1016/j.proeng.2016.04.016.

ASTM C496/C496M-04e1. (2011). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-04E01.

Rais, M. S., & Khan, R. A. (2020). Strength and durability characteristics of binary blended recycled coarse aggregate concrete containing microsilica and metakaolin. Innovative Infrastructure Solutions, 5(3). doi:10.1007/s41062-020-00365-0.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-01-012

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Mohammad Nadeem Akhtar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message