High Initial Concrete Compressive Strength with Variations of Superplasticizer and Silica Fume Additions
Abstract
Doi: 10.28991/CEJ-2025-011-01-07
Full Text: PDF
Keywords
References
Mazloom, M., Ramezanianpour, A. A., & Brooks, J. J. (2004). Effect of silica fume on mechanical properties of high-strength concrete. Cement and Concrete Composites, 26(4), 347–357. doi:10.1016/S0958-9465(03)00017-9.
Motahari Karein, S. M., Ramezanianpour, A. A., Ebadi, T., Isapour, S., & Karakouzian, M. (2017). A new approach for application of silica fume in concrete: Wet granulation. Construction and Building Materials, 157, 573–581. doi:10.1016/j.conbuildmat.2017.09.132.
Rostami, M., & Behfarnia, K. (2017). The effect of silica fume on durability of alkali activated slag concrete. Construction and Building Materials, 134, 262–268. doi:10.1016/j.conbuildmat.2016.12.072.
Bhalla, N., Sharma, S., Sharma, S., & Siddique, R. (2018). Monitoring early-age setting of silica fume concrete using wave propagation techniques. Construction and Building Materials, 162, 802–815. doi:10.1016/j.conbuildmat.2017.12.032.
Soroka, I., & Setter, N. (1977). The effect of fillers on strength of cement mortars. Cement and Concrete Research, 7(4), 449–456. doi:10.1016/0008-8846(77)90073-4.
Poppe, A. M., & De Schutter, G. (2005). Cement hydration in the presence of high filler contents. Cement and Concrete Research, 35(12), 2290–2299. doi:10.1016/j.cemconres.2005.03.008.
Boukhelf, F., Cherif, R., Trabelsi, A., Belarbi, R., & Bachir Bouiadjra, M. (2021). On the hygrothermal behavior of concrete containing glass powder and silica fume. Journal of Cleaner Production, 318, 128647. doi:10.1016/j.jclepro.2021.128647.
Wan, Z., He, T., Chang, N., Yang, R., & Qiu, H. (2023). Effect of silica fume on shrinkage of cement-based materials mixed with alkali accelerator and alkali-free accelerator. Journal of Materials Research and Technology, 22, 825–837. doi:10.1016/j.jmrt.2022.11.110.
Ma, X., He, T., Xu, Y., Yang, R., & Sun, Y. (2022). Hydration reaction and compressive strength of small amount of silica fume on cement-fly ash matrix. Case Studies in Construction Materials, 16, 989. doi:10.1016/j.cscm.2022.e00989.
Esping, O. (2008). Effect of limestone filler BET(H2O)-area on the fresh and hardened properties of self-compacting concrete. Cement and Concrete Research, 38(7), 938–944. doi:10.1016/j.cemconres.2008.03.010.
Garba, M. J., Tian, Y., Xie, Z., Yu, C., Hu, C., Chen, L., & Yuan, Q. (2024). Effect of accelerators on the long-term performance of shotcrete and its improvement strategies: A review. Journal of Building Engineering, 89, 109364. doi:10.1016/j.jobe.2024.109364.
Pu, B., Liu, B., Li, L., Jiang, L., Zhou, J., & Ding, P. (2024). Using rice husk ash in alkali-activated ultra-high-performance concrete: Flowability, early age strength and elasticity modulus. Construction and Building Materials, 443, 137771. doi:10.1016/j.conbuildmat.2024.137771.
Moon, G. D., Oh, S., & Choi, Y. C. (2016). Effects of the physicochemical properties of fly ash on the compressive strength of high-volume fly ash mortar. Construction and Building Materials, 124, 1072-1080. doi:10.1016/j.conbuildmat.2016.08.148.
Hornain, H., Marchand, J., Duhot, V., & Moranville-Regourd, M. (1995). Diffusion of chloride ions in limestone filler blended cement pastes and mortars. Cement and Concrete Research, 25(8), 1667–1678. doi:10.1016/0008-8846(95)00163-8.
Bentz, D. P. (2006). Modeling the influence of limestone filler on cement hydration using CEMHYD3D. Cement and Concrete Composites, 28(2), 124–129. doi:10.1016/j.cemconcomp.2005.10.006.
Ghrici, M., Kenai, S., & Said-Mansour, M. (2007). Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cement and Concrete Composites, 29(7), 542–549. doi:10.1016/j.cemconcomp.2007.04.009.
Helal, M. A. (2002). Effect of curing time on the physico-mechanical characteristics of the hardened cement pastes containing limestone. Cement and Concrete Research, 32(3), 447–450. doi:10.1016/S0008-8846(01)00700-1.
Ding, X., Li, C., Xu, Y., Li, F., & Zhao, S. (2016). Experimental study on long-term compressive strength of concrete with manufactured sand. Construction and Building Materials, 108, 67–73. doi:10.1016/j.conbuildmat.2016.01.028.
Fang, Y., Wang, X., Jia, L., Liu, C., Zhao, Z., Chen, C., & Zhang, Y. (2022). Synergistic effect of polycarboxylate superplasticizer and silica fume on early properties of early high strength grouting material for semi-flexible pavement. Construction and Building Materials, 319, 126065. doi:10.1016/j.conbuildmat.2021.126065.
Malhotra, V. M., Wilson, H. S., & Painter, K. E. (1989). Performance of gravels tone concrete incorporating silica fume at elevated temperatures. American Concrete Institute, ACI Special Publication, SP-114, 1051–1076. doi:10.14359/2577.
Samekto, W., & Rahmadiyanto, C. (2001). Concrete Technology. Kanisius, Yogyakarta, Indonesia. (In Indonesian).
SK SNI 03-1974-1990. (1990). Concrete Compressive Strength Testing Method. Dinas Pekerjaan Umum, Jakarta, Indonesia. (In Indonesian).
Tjokrodimuljo, K. (2007). Concrete Technology. Civil Engineering Publishing Bureau of Civil and Environmental Engineering Student Family. Gadjah Mada University Yogyakarta, Yogyakarta, Indonesia. (In Indonesian).
Pertiwi, H. (2011). Influence of sugar-based admixture on concrete’s compressive strength and elasticity modulus. Sebelas Maret University, Surakarta, Indonesia. (In Indonesian).
SNI 03-2834-2000. (2000). Procedures for making a normal concrete mix plan. Badan Standarisasi Nasional, Jakarta, Indonesia (In Indonesian).
Ikhsan, M. N., Prayuda, H., & Saleh, F. (2016). The Effect of Adding Broken Glass as a Substitute for Fine Aggregate and Adding Optical Fiber on the Compressive Strength of Fiber Concrete. Semesta Teknika, 19(2), 148-156. (In Indonesian).
Davidovits, J. (2008). Geopolymer chemistry and applications. Geopolymer Institute, Saint-Quentin, France.
Chindaprasirt, P., & Chalee, W. (2014). Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Construction and Building Materials, 63, 303-310. doi:10.1016/j.conbuildmat.2014.04.010.
DOI: 10.28991/CEJ-2025-011-01-07
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 nanang saiful rizal

This work is licensed under a Creative Commons Attribution 4.0 International License.