Influence of Integral Crystalline Waterproofing on Concrete Properties: Dosage Impact and Microstructural Analysis

Warun Na Songkhla, Sittisak Jamnam, Chalermphol Chaikaew, Gritsada Sua-iam

Abstract


The present research study aims to investigate the properties and performance of concrete containing an integral crystalline waterproofing (ICW) admixture, added at an optimal dosage to resist water without compromising structural integrity. To achieve this, an experimental program was conducted on specimens with ICW dosage variations ranging from 0 to 4.8 kg/m2. The impact on water absorption, pulse velocity, and microstructural characteristics was tested and analyzed using XRF and EDS techniques. The findings reveal that increasing the dosage decreases water absorption by approximately 43% at maximum dosage compared with the control. A 41% increase in pulse velocity indicates a denser concrete matrix. The principle of optimization is highlighted, as an overdose of ICW generates a non-structural crystalline gel at the bottom of the specimens. The optimum dosage range for ICW to improve water resistance without adverse effects on structural performance was determined to be 3.2 to 4.0 kg/m2. This research introduces a novel approach by evaluating the comprehensive performance of concrete in relation to ICW dosage, providing valuable insights into the practical application of ICW admixture to enhance concrete quality and durability.

 

Doi: 10.28991/CEJ-2024-010-10-02

Full Text: PDF


Keywords


Integral Crystalline Waterproofing; Water Absorption; Pulse Velocity; Microstructure Characteristics; Crystal Gel.

References


Glasser, F. P., Marchand, J., & Samson, E. (2008). Durability of concrete - Degradation phenomena involving detrimental chemical reactions. Cement and Concrete Research, 38(2), 226–246. doi:10.1016/j.cemconres.2007.09.015.

Breysse, D. (2010). Deterioration processes in reinforced concrete: an overview. Non-Destructive Evaluation of Reinforced Concrete Structures, 28–56, Woodhead Publishing, Cambridge, United Kingdom. doi:10.1533/9781845699536.1.28.

Awoyera, P., Adesina, A., Olalusi, O. B., & Viloria, A. (2020). Reinforced concrete deterioration caused by contaminated construction water: An overview. Engineering Failure Analysis, 116, 104715. doi:10.1016/j.engfailanal.2020.104715.

Gardner, D., Lark, R., Jefferson, T., & Davies, R. (2018). A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials. Case Studies in Construction Materials, 8, 238–247. doi:10.1016/j.cscm.2018.02.002.

Uthaman, S., & Vishwakarma, V. (2023). Assessment of causes and consequences of concrete deterioration and its remediation. Journal of Building Engineering, 79, 107790. doi:10.1016/j.jobe.2023.107790.

Jiang, L., Pettitt, T. R., Buenfeld, N., & Smith, S. R. (2022). A critical review of the physiological, ecological, physical and chemical factors influencing the microbial degradation of concrete by fungi. Building and Environment, 214, 108925. doi:10.1016/j.buildenv.2022.108925.

Sanchez-Silva, M., & Rosowsky, D. V. (2008). Biodeterioration of Construction Materials: State of the Art and Future Challenges. Journal of Materials in Civil Engineering, 20(5), 352–365. doi:10.1061/(asce)0899-1561(2008)20:5(352).

Asmara, Y. P. (2024). Concrete Reinforcement Degradation and Rehabilitation. Engineering Materials, Springer Nature Singapore. doi:10.1007/978-981-99-5933-4.

Poonguzhali, A., Shaikh, H., Dayal, R. K., & Khatak, H. S. (2008). A review on degradation mechanism and life estimation of civil structures. Corrosion Reviews, 26(4), 215–294. doi:10.1515/corrrev.2008.215.

Nilsson, L. O. (2005). On the role of moisture in degradation of concrete structures. Repair and Renovation of Concrete Structures: Proceedings of the International Conference, 5-6 May, 2005, University of Dundee, Dundee, Scotland.

Tomann, C., & Oneschkow, N. (2019). Influence of moisture content in the microstructure on the fatigue deterioration of high-strength concrete. Structural Concrete, 20(4), 1204–1211. doi:10.1002/suco.201900023.

Hartell, J. A., & Zeng, H. (2020). Concrete degradation due to moisture and low- And high-temperature cycling. ACI Materials Journal, 117(1), 129–138. doi:10.14359/51719078.

Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction - A review. Cement and Concrete Composites, 25(4-5 SPEC), 459–471. doi:10.1016/S0958-9465(02)00086-0.

Rodrigues, R., Gaboreau, S., Gance, J., Ignatiadis, I., & Betelu, S. (2021). Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Construction and Building Materials, 269, 121240. doi:10.1016/j.conbuildmat.2020.121240.

Zhang, P., Cong, Y., Vogel, M., Liu, Z., Müller, H. S., Zhu, Y., & Zhao, T. (2017). Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation. Construction and Building Materials, 148, 113–121. doi:10.1016/j.conbuildmat.2017.05.078.

Berrocal, C. G., Lundgren, K., & Löfgren, I. (2016). Corrosion of steel bars embedded in fibre reinforced concrete under chloride attack: State of the art. Cement and Concrete Research, 80, 69–85. doi:10.1016/j.cemconres.2015.10.006.

James, A., Bazarchi, E., Chiniforush, A. A., Panjebashi Aghdam, P., Hosseini, M. R., Akbarnezhad, A., Martek, I., & Ghodoosi, F. (2019). Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments: A review. Construction and Building Materials, 224, 1026–1039. doi:10.1016/j.conbuildmat.2019.07.250.

Melchers, R. E., & Li, C. Q. (2009). Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments. Cement and Concrete Research, 39(11), 1068–1076. doi:10.1016/j.cemconres.2009.07.003.

Zhang, M., Sun, S., Liu, K., Li, T., & Yang, H. (2023). Research on the critical chloride content of reinforcement corrosion in marine concrete — A review. Journal of Building Engineering, 79, 107838. doi:10.1016/j.jobe.2023.107838.

Zheng, X., Wang, Y., Zhang, S., Xu, F., Zhu, X., Jiang, X., Zhou, L., Shen, Y., Chen, Q., Yan, Z., Zhao, W., Zhu, H., & Zhang, Y. (2022). Research progress of the thermophysical and mechanical properties of concrete subjected to freeze-thaw cycles. Construction and Building Materials, 330, 127254. doi:10.1016/j.conbuildmat.2022.127254.

Wang, Z., Zeng, Q., Wu, Y., Wang, L., Yao, Y., & Li, K. (2014). Relative humidity and deterioration of concrete under freeze-thaw load. Construction and Building Materials, 62, 18–27. doi:10.1016/j.conbuildmat.2014.03.027.

Guo, J., Sun, W., Xu, Y., Lin, W., & Jing, W. (2022). Damage Mechanism and Modeling of Concrete in Freeze–Thaw Cycles: A Review. Buildings, 12(9), 12. doi:10.3390/buildings12091317.

Luo, S., Bai, T., Guo, M., Wei, Y., & Ma, W. (2022). Impact of Freeze–Thaw Cycles on the Long-Term Performance of Concrete Pavement and Related Improvement Measures: A Review. Materials, 15(13), 4568. doi:10.3390/ma15134568.

Liu, D., Tu, Y., Shi, P., Sas, G., & Elfgren, L. (2021). Mechanical and durability properties of concrete subjected to early-age freeze–thaw cycles. Materials and Structures/Materiaux et Constructions, 54(6), 211. doi:10.1617/s11527-021-01802-x.

Kuosa, H., Ferreira, R. M., Holt, E., Leivo, M., & Vesikari, E. (2014). Effect of coupled deterioration by freeze-thaw, carbonation and chlorides on concrete service life. Cement and Concrete Composites, 47, 32–40. doi:10.1016/j.cemconcomp.2013.10.008.

John, E., & Lothenbach, B. (2023). Cement hydration mechanisms through time – a review. Journal of Materials Science, 58(24), 9805–9833. doi:10.1007/s10853-023-08651-9.

Jain, J., & Neithalath, N. (2009). Analysis of calcium leaching behavior of plain and modified cement pastes in pure water. Cement and Concrete Composites, 31(3), 176–185. doi:10.1016/j.cemconcomp.2009.01.003.

Yang, H., Che, Y., & Leng, F. (2018). Calcium leaching behavior of cementitious materials in hydrochloric acid solution. Scientific Reports, 8(1), 8806. doi:10.1038/s41598-018-27255-x.

Al-Jabari, M. (2022). Fundamentals and categorizations of waterproofing technologies. Integral Waterproofing of Concrete Structures, 165–198, Woodhead Publishing, Cambridge, United Kingdom. doi:10.1016/B978-0-12-824354-1.00006-4.

Pan, X., Shi, Z., Shi, C., Ling, T. C., & Li, N. (2017). A review on concrete surface treatment Part I: Types and mechanisms. Construction and Building Materials, 132, 578–590. doi:10.1016/j.conbuildmat.2016.12.025.

Gomes, L. C. de F., Gomes, H. C., & Reis, E. D. (2023). Surface Waterproofing Techniques: A Case Study in Nova Lima, Brazil. Eng, 4(3), 1871–1890. doi:10.3390/eng4030106.

Pan, X., Shi, Z., Shi, C., Ling, T. C., & Li, N. (2017). A review on surface treatment for concrete – Part 2: Performance. Construction and Building Materials, 133, 81–90. doi:10.1016/j.conbuildmat.2016.11.128.

Jahandari, S., Tao, Z., Alim, M. A., & Li, W. (2023). Integral waterproof concrete: A comprehensive review. Journal of Building Engineering, 78, 107718. doi:10.1016/j.jobe.2023.107718.

Ndoj, G., Kastrati, A., Elezi, E., & Xhexhi, K. (2022). Capacity of Self-Sealing Concrete Embedding Crystalline Admixture. European Journal of Engineering and Technology Research, 7(2), 76–80. doi:10.24018/ejeng.2022.7.2.2762.

Al-Jabari, M. (2022). Concepts and types of integral waterproofing materials. Integral Waterproofing of Concrete Structures, 199–246, Woodhead Publishing, Cambridge, United Kingdom. doi:10.1016/B978-0-12-824354-1.00007-6.

de Souza Oliveira, A., Dweck, J., de Moraes Rego Fairbairn, E., da Fonseca Martins Gomes, O., & Toledo Filho, R. D. (2020). Crystalline admixture effects on crystal formation phenomena during cement pastes’ hydration. Journal of Thermal Analysis and Calorimetry, 139(6), 3361–3375. doi:10.1007/s10973-019-08745-0.

Liu, J. Bin, Qin, H. G., Geng, F., Guo, W., & Pang, C. M. (2013). Effect of cement-based permeable crystallization material on the performance of deterioration concrete. Applied Mechanics and Materials, 368–370(1), 905–910. doi:10.4028/www.scientific.net/AMM.368-370.905.

Elsalamawy, M., Mohamed, A. R., & Abosen, A. latif E. (2020). Performance of crystalline forming additive materials in concrete. Construction and Building Materials, 230, 117056. doi:10.1016/j.conbuildmat.2019.117056.

Lin, X., Li, W., Castel, A., Kim, T., Huang, Y., & Wang, K. (2023). A comprehensive review on self-healing cementitious composites with crystalline admixtures: Design, performance and application. Construction and Building Materials, 409, 134108. doi:10.1016/j.conbuildmat.2023.134108.

Tsampali, E., & Stefanidou, M. (2022). The role of crystalline admixtures in the long-term healing process of fiber-reinforced cementitious composites (FRCC). Journal of Building Engineering, 60, 105164. doi:10.1016/j.jobe.2022.105164.

Lim, S., & Kawashima, S. (2019). Mechanisms Underlying Crystalline Waterproofing through Microstructural and Phase Characterization. Journal of Materials in Civil Engineering, 31(9), 04019175. doi:10.1061/(asce)mt.1943-5533.0002752.

Hu, X., Xiao, J., Zhang, Z., Wang, C., Long, C., & Dai, L. (2022). Effects of CCCW on properties of cement-based materials: A review. Journal of Building Engineering, 50, 104184. doi:10.1016/j.jobe.2022.104184.

de Souza Oliveira, A., da Fonseca Martins Gomes, O., Ferrara, L., de Moraes Rego Fairbairn, E., & Toledo Filho, R. D. (2021). An overview of a twofold effect of crystalline admixtures in cement-based materials: from permeability-reducers to self-healing stimulators. Journal of Building Engineering, 41, 102400. doi:10.1016/j.jobe.2021.102400.

Al-Rashed, R., & Al-Jabari, M. (2021). Multi-crystallization enhancer for concrete waterproofing by pore blocking. Construction and Building Materials, 272, 121668. doi:10.1016/j.conbuildmat.2020.121668.

Al-Rashed, R., & Al-Jabari, M. (2021). Concrete protection by combined hygroscopic and hydrophilic crystallization waterproofing applied to fresh concrete. Case Studies in Construction Materials, 15, 635. doi:10.1016/j.cscm.2021.e00635.

Al-Jabari, M., Al-Rashed, R., & Ayers, M. E. (2023). Mitigation of alkali silica reactions in concrete using multi-crystalline intermixed waterproofing materials. Cement, 12, 100065. doi:10.1016/j.cement.2023.100065.

Al-Rashed, R., & Jabari, M. (2020). Dual-crystallization waterproofing technology for topical treatment of concrete. Case Studies in Construction Materials, 13, 408. doi:10.1016/j.cscm.2020.e00408.

Al-Kheetan, M. J., Rahman, M. M., & Chamberlain, D. A. (2018). Development of hydrophobic concrete by adding dual-crystalline admixture at mixing stage. Structural Concrete, 19(5), 1504–1511. doi:10.1002/suco.201700254.

Wu, Z., Zhang, J., Xu, W., Ding, Y., Ren, Q., Sun, Q., & Zhu, Y. (2023). Development of cementitious capillary crystalline waterproofing agents and durability study of concrete in the presence of chloride with sulfate in aqueous environment. Journal of Building Engineering, 79, 107798. doi:10.1016/j.jobe.2023.107798.

Wang, C., Xiao, J., Long, C., Zhang, Q., Shi, J., & Zhang, Z. (2023). Influences of the joint action of sulfate erosion and cementitious capillary crystalline waterproofing materials on the hydration products and properties of cement-based materials: A review. Journal of Building Engineering, 68, 106061. doi:10.1016/j.jobe.2023.106061.

Zhang, C., Guan, X., Li, J., Li, Y., & Lu, R. (2023). Coupling effect of cementitious capillary crystalline waterproof material and exposure environments on self-healing properties of engineered cementitious composites (ECC). Journal of Building Engineering, 63, 105471. doi:10.1016/j.jobe.2022.105471.

Zhang, Y., Wang, Q., Chen, J., Tang, J., Zhou, H., Zhou, W., Chang, X., & Cheng, Y. (2024). Preparation and performance study of active chemicals in cementitious capillary crystalline waterproofing materials. Case Studies in Construction Materials, 20, 2874. doi:10.1016/j.cscm.2024.e02874.

Songkhla, W. N., Oonta-On, K., & Sua-Iam, G. (2024). Investigating the effectiveness of integral crystalline waterproofing and microstructural analysis: A case study of national convention building basement. Engineering and Applied Science Research, 51(3), 362–375. doi:10.14456/easr.2024.34.

Li, Y., Huang, P., Gao, Y., Sheng, J., Li, W., & Wang, F. (2024). Effect of waterproofing materials on resistivity and pore properties of concrete under insolation and rain. Construction and Building Materials, 425, 136108. doi:10.1016/j.conbuildmat.2024.136108.

Li, H., Zhou, A., Wu, Y., Deng, L., Zhu, K., & Lu, F. (2023). Research and Development of Self-Waterproofing Concrete for Tunnel Lining Structure and Its Impermeability and Crack Resistance Characteristics. Materials, 16(16), 5557. doi:10.3390/ma16165557.

Wang, M., Yang, X., Zheng, K., & Chen, R. (2024). Properties and Microstructure of a Cement-Based Capillary Crystalline Waterproofing Grouting Material. Buildings, 14(5), 1439. doi:10.3390/buildings14051439.

Uygunoğlu, T., Fidan, U., Şimşek, B., & Tuncer, A. (2024). Determination of carbonation depth and pH in concrete containing crystalline waterproofing agents using the endoscopic method. Journal of Building Engineering, 94, 110041. doi:10.1016/j.jobe.2024.110041.

ASTM C150-07. (2012). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150-07.

ASTM C33/C33M-24. (2024). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-24.

ASTM C192/C192M-14. (2015). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, Pennsylvania, United States. doi:10.1520/C0192_C0192M-14.

ASTM C642-21. (2022). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0642-21.

ASTM C597-22. (2023). Standard Test Method for Ultrasonic Pulse Velocity through Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0597-22.

Golewski, G. L. (2023). Assessing of water absorption on concrete composites containing fly ash up to 30 % in regards to structures completely immersed in water. Case Studies in Construction Materials, 19, 2337. doi:10.1016/j.cscm.2023.e02337.

Azarsa, P., Gupta, R., & Biparva, A. (2019). Assessment of self-healing and durability parameters of concretes incorporating crystalline admixtures and Portland Limestone Cement. Cement and Concrete Composites, 99, 17–31. doi:10.1016/j.cemconcomp.2019.02.017.

Jittamaro, P., Maho, B., Pongsopha, P., Nicomrat, D., Jamnam, S., Makul, N., & Sua-iam, G. (2024). Enhancing the usability of electronic waste fibers in high-performance self-compacting mortar incorporating corn cob ash and silica fume: Fresh and hardened properties. Construction and Building Materials, 416, 135194. doi:10.1016/j.conbuildmat.2024.135194.

Faisal, S., & Kumar Patra, A. (2022). Investigation on photocatalytic and structural characteristics of normal concrete using TiO2 at ambient temperature. Materials Today: Proceedings, 68, 164–173. doi:10.1016/j.matpr.2022.08.425.

Mircea, C., Toader, T. P., Hegyi, A., Ionescu, B. A., & Mircea, A. (2021). Early age sealing capacity of structural mortar with integral crystalline waterproofing admixture. Materials, 14(17), 4951. doi:10.3390/ma14174951.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-10-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Warun Na Songkhla, Sittsak Jamnam, Chalermphol Chaikaew, Gritsada Sua-iam

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message