Influence of Integral Crystalline Waterproofing on Concrete Properties: Dosage Impact and Microstructural Analysis
Abstract
Doi: 10.28991/CEJ-2024-010-10-02
Full Text: PDF
Keywords
References
Glasser, F. P., Marchand, J., & Samson, E. (2008). Durability of concrete - Degradation phenomena involving detrimental chemical reactions. Cement and Concrete Research, 38(2), 226–246. doi:10.1016/j.cemconres.2007.09.015.
Breysse, D. (2010). Deterioration processes in reinforced concrete: an overview. Non-Destructive Evaluation of Reinforced Concrete Structures, 28–56, Woodhead Publishing, Cambridge, United Kingdom. doi:10.1533/9781845699536.1.28.
Awoyera, P., Adesina, A., Olalusi, O. B., & Viloria, A. (2020). Reinforced concrete deterioration caused by contaminated construction water: An overview. Engineering Failure Analysis, 116, 104715. doi:10.1016/j.engfailanal.2020.104715.
Gardner, D., Lark, R., Jefferson, T., & Davies, R. (2018). A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials. Case Studies in Construction Materials, 8, 238–247. doi:10.1016/j.cscm.2018.02.002.
Uthaman, S., & Vishwakarma, V. (2023). Assessment of causes and consequences of concrete deterioration and its remediation. Journal of Building Engineering, 79, 107790. doi:10.1016/j.jobe.2023.107790.
Jiang, L., Pettitt, T. R., Buenfeld, N., & Smith, S. R. (2022). A critical review of the physiological, ecological, physical and chemical factors influencing the microbial degradation of concrete by fungi. Building and Environment, 214, 108925. doi:10.1016/j.buildenv.2022.108925.
Sanchez-Silva, M., & Rosowsky, D. V. (2008). Biodeterioration of Construction Materials: State of the Art and Future Challenges. Journal of Materials in Civil Engineering, 20(5), 352–365. doi:10.1061/(asce)0899-1561(2008)20:5(352).
Asmara, Y. P. (2024). Concrete Reinforcement Degradation and Rehabilitation. Engineering Materials, Springer Nature Singapore. doi:10.1007/978-981-99-5933-4.
Poonguzhali, A., Shaikh, H., Dayal, R. K., & Khatak, H. S. (2008). A review on degradation mechanism and life estimation of civil structures. Corrosion Reviews, 26(4), 215–294. doi:10.1515/corrrev.2008.215.
Nilsson, L. O. (2005). On the role of moisture in degradation of concrete structures. Repair and Renovation of Concrete Structures: Proceedings of the International Conference, 5-6 May, 2005, University of Dundee, Dundee, Scotland.
Tomann, C., & Oneschkow, N. (2019). Influence of moisture content in the microstructure on the fatigue deterioration of high-strength concrete. Structural Concrete, 20(4), 1204–1211. doi:10.1002/suco.201900023.
Hartell, J. A., & Zeng, H. (2020). Concrete degradation due to moisture and low- And high-temperature cycling. ACI Materials Journal, 117(1), 129–138. doi:10.14359/51719078.
Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction - A review. Cement and Concrete Composites, 25(4-5 SPEC), 459–471. doi:10.1016/S0958-9465(02)00086-0.
Rodrigues, R., Gaboreau, S., Gance, J., Ignatiadis, I., & Betelu, S. (2021). Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Construction and Building Materials, 269, 121240. doi:10.1016/j.conbuildmat.2020.121240.
Zhang, P., Cong, Y., Vogel, M., Liu, Z., Müller, H. S., Zhu, Y., & Zhao, T. (2017). Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation. Construction and Building Materials, 148, 113–121. doi:10.1016/j.conbuildmat.2017.05.078.
Berrocal, C. G., Lundgren, K., & Löfgren, I. (2016). Corrosion of steel bars embedded in fibre reinforced concrete under chloride attack: State of the art. Cement and Concrete Research, 80, 69–85. doi:10.1016/j.cemconres.2015.10.006.
James, A., Bazarchi, E., Chiniforush, A. A., Panjebashi Aghdam, P., Hosseini, M. R., Akbarnezhad, A., Martek, I., & Ghodoosi, F. (2019). Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments: A review. Construction and Building Materials, 224, 1026–1039. doi:10.1016/j.conbuildmat.2019.07.250.
Melchers, R. E., & Li, C. Q. (2009). Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments. Cement and Concrete Research, 39(11), 1068–1076. doi:10.1016/j.cemconres.2009.07.003.
Zhang, M., Sun, S., Liu, K., Li, T., & Yang, H. (2023). Research on the critical chloride content of reinforcement corrosion in marine concrete — A review. Journal of Building Engineering, 79, 107838. doi:10.1016/j.jobe.2023.107838.
Zheng, X., Wang, Y., Zhang, S., Xu, F., Zhu, X., Jiang, X., Zhou, L., Shen, Y., Chen, Q., Yan, Z., Zhao, W., Zhu, H., & Zhang, Y. (2022). Research progress of the thermophysical and mechanical properties of concrete subjected to freeze-thaw cycles. Construction and Building Materials, 330, 127254. doi:10.1016/j.conbuildmat.2022.127254.
Wang, Z., Zeng, Q., Wu, Y., Wang, L., Yao, Y., & Li, K. (2014). Relative humidity and deterioration of concrete under freeze-thaw load. Construction and Building Materials, 62, 18–27. doi:10.1016/j.conbuildmat.2014.03.027.
Guo, J., Sun, W., Xu, Y., Lin, W., & Jing, W. (2022). Damage Mechanism and Modeling of Concrete in Freeze–Thaw Cycles: A Review. Buildings, 12(9), 12. doi:10.3390/buildings12091317.
Luo, S., Bai, T., Guo, M., Wei, Y., & Ma, W. (2022). Impact of Freeze–Thaw Cycles on the Long-Term Performance of Concrete Pavement and Related Improvement Measures: A Review. Materials, 15(13), 4568. doi:10.3390/ma15134568.
Liu, D., Tu, Y., Shi, P., Sas, G., & Elfgren, L. (2021). Mechanical and durability properties of concrete subjected to early-age freeze–thaw cycles. Materials and Structures/Materiaux et Constructions, 54(6), 211. doi:10.1617/s11527-021-01802-x.
Kuosa, H., Ferreira, R. M., Holt, E., Leivo, M., & Vesikari, E. (2014). Effect of coupled deterioration by freeze-thaw, carbonation and chlorides on concrete service life. Cement and Concrete Composites, 47, 32–40. doi:10.1016/j.cemconcomp.2013.10.008.
John, E., & Lothenbach, B. (2023). Cement hydration mechanisms through time – a review. Journal of Materials Science, 58(24), 9805–9833. doi:10.1007/s10853-023-08651-9.
Jain, J., & Neithalath, N. (2009). Analysis of calcium leaching behavior of plain and modified cement pastes in pure water. Cement and Concrete Composites, 31(3), 176–185. doi:10.1016/j.cemconcomp.2009.01.003.
Yang, H., Che, Y., & Leng, F. (2018). Calcium leaching behavior of cementitious materials in hydrochloric acid solution. Scientific Reports, 8(1), 8806. doi:10.1038/s41598-018-27255-x.
Al-Jabari, M. (2022). Fundamentals and categorizations of waterproofing technologies. Integral Waterproofing of Concrete Structures, 165–198, Woodhead Publishing, Cambridge, United Kingdom. doi:10.1016/B978-0-12-824354-1.00006-4.
Pan, X., Shi, Z., Shi, C., Ling, T. C., & Li, N. (2017). A review on concrete surface treatment Part I: Types and mechanisms. Construction and Building Materials, 132, 578–590. doi:10.1016/j.conbuildmat.2016.12.025.
Gomes, L. C. de F., Gomes, H. C., & Reis, E. D. (2023). Surface Waterproofing Techniques: A Case Study in Nova Lima, Brazil. Eng, 4(3), 1871–1890. doi:10.3390/eng4030106.
Pan, X., Shi, Z., Shi, C., Ling, T. C., & Li, N. (2017). A review on surface treatment for concrete – Part 2: Performance. Construction and Building Materials, 133, 81–90. doi:10.1016/j.conbuildmat.2016.11.128.
Jahandari, S., Tao, Z., Alim, M. A., & Li, W. (2023). Integral waterproof concrete: A comprehensive review. Journal of Building Engineering, 78, 107718. doi:10.1016/j.jobe.2023.107718.
Ndoj, G., Kastrati, A., Elezi, E., & Xhexhi, K. (2022). Capacity of Self-Sealing Concrete Embedding Crystalline Admixture. European Journal of Engineering and Technology Research, 7(2), 76–80. doi:10.24018/ejeng.2022.7.2.2762.
Al-Jabari, M. (2022). Concepts and types of integral waterproofing materials. Integral Waterproofing of Concrete Structures, 199–246, Woodhead Publishing, Cambridge, United Kingdom. doi:10.1016/B978-0-12-824354-1.00007-6.
de Souza Oliveira, A., Dweck, J., de Moraes Rego Fairbairn, E., da Fonseca Martins Gomes, O., & Toledo Filho, R. D. (2020). Crystalline admixture effects on crystal formation phenomena during cement pastes’ hydration. Journal of Thermal Analysis and Calorimetry, 139(6), 3361–3375. doi:10.1007/s10973-019-08745-0.
Liu, J. Bin, Qin, H. G., Geng, F., Guo, W., & Pang, C. M. (2013). Effect of cement-based permeable crystallization material on the performance of deterioration concrete. Applied Mechanics and Materials, 368–370(1), 905–910. doi:10.4028/www.scientific.net/AMM.368-370.905.
Elsalamawy, M., Mohamed, A. R., & Abosen, A. latif E. (2020). Performance of crystalline forming additive materials in concrete. Construction and Building Materials, 230, 117056. doi:10.1016/j.conbuildmat.2019.117056.
Lin, X., Li, W., Castel, A., Kim, T., Huang, Y., & Wang, K. (2023). A comprehensive review on self-healing cementitious composites with crystalline admixtures: Design, performance and application. Construction and Building Materials, 409, 134108. doi:10.1016/j.conbuildmat.2023.134108.
Tsampali, E., & Stefanidou, M. (2022). The role of crystalline admixtures in the long-term healing process of fiber-reinforced cementitious composites (FRCC). Journal of Building Engineering, 60, 105164. doi:10.1016/j.jobe.2022.105164.
Lim, S., & Kawashima, S. (2019). Mechanisms Underlying Crystalline Waterproofing through Microstructural and Phase Characterization. Journal of Materials in Civil Engineering, 31(9), 04019175. doi:10.1061/(asce)mt.1943-5533.0002752.
Hu, X., Xiao, J., Zhang, Z., Wang, C., Long, C., & Dai, L. (2022). Effects of CCCW on properties of cement-based materials: A review. Journal of Building Engineering, 50, 104184. doi:10.1016/j.jobe.2022.104184.
de Souza Oliveira, A., da Fonseca Martins Gomes, O., Ferrara, L., de Moraes Rego Fairbairn, E., & Toledo Filho, R. D. (2021). An overview of a twofold effect of crystalline admixtures in cement-based materials: from permeability-reducers to self-healing stimulators. Journal of Building Engineering, 41, 102400. doi:10.1016/j.jobe.2021.102400.
Al-Rashed, R., & Al-Jabari, M. (2021). Multi-crystallization enhancer for concrete waterproofing by pore blocking. Construction and Building Materials, 272, 121668. doi:10.1016/j.conbuildmat.2020.121668.
Al-Rashed, R., & Al-Jabari, M. (2021). Concrete protection by combined hygroscopic and hydrophilic crystallization waterproofing applied to fresh concrete. Case Studies in Construction Materials, 15, 635. doi:10.1016/j.cscm.2021.e00635.
Al-Jabari, M., Al-Rashed, R., & Ayers, M. E. (2023). Mitigation of alkali silica reactions in concrete using multi-crystalline intermixed waterproofing materials. Cement, 12, 100065. doi:10.1016/j.cement.2023.100065.
Al-Rashed, R., & Jabari, M. (2020). Dual-crystallization waterproofing technology for topical treatment of concrete. Case Studies in Construction Materials, 13, 408. doi:10.1016/j.cscm.2020.e00408.
Al-Kheetan, M. J., Rahman, M. M., & Chamberlain, D. A. (2018). Development of hydrophobic concrete by adding dual-crystalline admixture at mixing stage. Structural Concrete, 19(5), 1504–1511. doi:10.1002/suco.201700254.
Wu, Z., Zhang, J., Xu, W., Ding, Y., Ren, Q., Sun, Q., & Zhu, Y. (2023). Development of cementitious capillary crystalline waterproofing agents and durability study of concrete in the presence of chloride with sulfate in aqueous environment. Journal of Building Engineering, 79, 107798. doi:10.1016/j.jobe.2023.107798.
Wang, C., Xiao, J., Long, C., Zhang, Q., Shi, J., & Zhang, Z. (2023). Influences of the joint action of sulfate erosion and cementitious capillary crystalline waterproofing materials on the hydration products and properties of cement-based materials: A review. Journal of Building Engineering, 68, 106061. doi:10.1016/j.jobe.2023.106061.
Zhang, C., Guan, X., Li, J., Li, Y., & Lu, R. (2023). Coupling effect of cementitious capillary crystalline waterproof material and exposure environments on self-healing properties of engineered cementitious composites (ECC). Journal of Building Engineering, 63, 105471. doi:10.1016/j.jobe.2022.105471.
Zhang, Y., Wang, Q., Chen, J., Tang, J., Zhou, H., Zhou, W., Chang, X., & Cheng, Y. (2024). Preparation and performance study of active chemicals in cementitious capillary crystalline waterproofing materials. Case Studies in Construction Materials, 20, 2874. doi:10.1016/j.cscm.2024.e02874.
Songkhla, W. N., Oonta-On, K., & Sua-Iam, G. (2024). Investigating the effectiveness of integral crystalline waterproofing and microstructural analysis: A case study of national convention building basement. Engineering and Applied Science Research, 51(3), 362–375. doi:10.14456/easr.2024.34.
Li, Y., Huang, P., Gao, Y., Sheng, J., Li, W., & Wang, F. (2024). Effect of waterproofing materials on resistivity and pore properties of concrete under insolation and rain. Construction and Building Materials, 425, 136108. doi:10.1016/j.conbuildmat.2024.136108.
Li, H., Zhou, A., Wu, Y., Deng, L., Zhu, K., & Lu, F. (2023). Research and Development of Self-Waterproofing Concrete for Tunnel Lining Structure and Its Impermeability and Crack Resistance Characteristics. Materials, 16(16), 5557. doi:10.3390/ma16165557.
Wang, M., Yang, X., Zheng, K., & Chen, R. (2024). Properties and Microstructure of a Cement-Based Capillary Crystalline Waterproofing Grouting Material. Buildings, 14(5), 1439. doi:10.3390/buildings14051439.
Uygunoğlu, T., Fidan, U., Şimşek, B., & Tuncer, A. (2024). Determination of carbonation depth and pH in concrete containing crystalline waterproofing agents using the endoscopic method. Journal of Building Engineering, 94, 110041. doi:10.1016/j.jobe.2024.110041.
ASTM C150-07. (2012). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150-07.
ASTM C33/C33M-24. (2024). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-24.
ASTM C192/C192M-14. (2015). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International, Pennsylvania, United States. doi:10.1520/C0192_C0192M-14.
ASTM C642-21. (2022). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0642-21.
ASTM C597-22. (2023). Standard Test Method for Ultrasonic Pulse Velocity through Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0597-22.
Golewski, G. L. (2023). Assessing of water absorption on concrete composites containing fly ash up to 30 % in regards to structures completely immersed in water. Case Studies in Construction Materials, 19, 2337. doi:10.1016/j.cscm.2023.e02337.
Azarsa, P., Gupta, R., & Biparva, A. (2019). Assessment of self-healing and durability parameters of concretes incorporating crystalline admixtures and Portland Limestone Cement. Cement and Concrete Composites, 99, 17–31. doi:10.1016/j.cemconcomp.2019.02.017.
Jittamaro, P., Maho, B., Pongsopha, P., Nicomrat, D., Jamnam, S., Makul, N., & Sua-iam, G. (2024). Enhancing the usability of electronic waste fibers in high-performance self-compacting mortar incorporating corn cob ash and silica fume: Fresh and hardened properties. Construction and Building Materials, 416, 135194. doi:10.1016/j.conbuildmat.2024.135194.
Faisal, S., & Kumar Patra, A. (2022). Investigation on photocatalytic and structural characteristics of normal concrete using TiO2 at ambient temperature. Materials Today: Proceedings, 68, 164–173. doi:10.1016/j.matpr.2022.08.425.
Mircea, C., Toader, T. P., Hegyi, A., Ionescu, B. A., & Mircea, A. (2021). Early age sealing capacity of structural mortar with integral crystalline waterproofing admixture. Materials, 14(17), 4951. doi:10.3390/ma14174951.
DOI: 10.28991/CEJ-2024-010-10-02
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Warun Na Songkhla, Sittsak Jamnam, Chalermphol Chaikaew, Gritsada Sua-iam
This work is licensed under a Creative Commons Attribution 4.0 International License.