Evaluating Axial Strength of Cold-formed C-Section Steel Columns Filled with Green High-performance Concrete
Abstract
Â
Doi: 10.28991/CEJ-SP2024-010-014
Full Text: PDF
Keywords
References
Zong, Z. H., Jaishi, B., Ge, J. P., & Ren, W. X. (2005). Dynamic analysis of a half-through concrete-filled steel tubular arch bridge. Engineering Structures, 27(1), 3–15. doi:10.1016/j.engstruct.2004.08.007.
Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211–228. doi:10.1016/j.jcsr.2014.04.016.
Wu, D., Gao, W., Feng, J., & Luo, K. (2016). Structural behaviour evolution of composite steel-concrete curved structure with uncertain creep and shrinkage effects. Composites Part B: Engineering, 86, 261–272. doi:10.1016/j.compositesb.2015.10.004.
Gao, J., Su, J., Xia, Y., & Chen, B. (2014). Experimental study of concrete-filled steel tubular arches with corrugated steel webs. Advanced Steel Construction, 10(1), 99–115. doi:10.18057/ijasc.2014.10.1.7.
Elchalakani, M., Zhao, X. L., & Grzebieta, R. H. (2001). Concrete-filled circular steel tubes subjected to pure bending. Journal of Constructional Steel Research, 57(11), 1141–1168. doi:10.1016/S0143-974X(01)00035-9.
Ren, Q. X., Han, L. H., Lam, D., & Li, W. (2014). Tests on elliptical concrete filled steel tubular (CFST) beams and columns. Journal of Constructional Steel Research, 99, 149–160. doi:10.1016/j.jcsr.2014.03.010.
Wang, R., Han, L. H., Nie, J. G., & Zhao, X. L. (2014). Flexural performance of rectangular CFST members. Thin-Walled Structures, 79, 154–165. doi:10.1016/j.tws.2014.02.015.
Zhang, Y. B., Han, L. H., Zhou, K., & Yang, S. (2019). Mechanical performance of hexagonal multi-cell concrete-filled steel tubular (CFST) stub columns under axial compression. Thin-Walled Structures, 134, 71–83. doi:10.1016/j.tws.2018.09.027.
Javed, M. F., Sulong, N. H. R., Memon, S. A., Rehman, S. K. U., & Khan, N. B. (2017). FE modelling of the flexural behaviour of square and rectangular steel tubes filled with normal and high strength concrete. Thin-Walled Structures, 119, 470–481. doi:10.1016/j.tws.2017.06.025.
Su, S., Li, X., Wang, T., & Zhu, Y. (2016). A comparative study of environmental performance between CFST and RC columns under combinations of compression and bending. Journal of Cleaner Production, 137, 10–20. doi:10.1016/j.jclepro.2016.07.043.
Saadeh, M., & Irshidat, M. R. (2024). Recent advances in concrete-filled fiber-reinforced polymer tubes: a systematic review and future directions. Innovative Infrastructure Solutions, 9(11), 406. doi:10.1007/s41062-024-01722-z.
Senthilkumar, R., Karunakaran, P., & Chandru, U. (2023). Progress and challenges in double skin steel–concrete composite walls: a review. Innovative Infrastructure Solutions, 8(1), 32. doi:10.1007/s41062-022-00973-y.
Shen, Y., & Tu, Y. (2021). Flexural strength evaluation of multi-cell composite T-shaped concrete-filled steel tubular beams. Materials, 14(11), 2838. doi:10.3390/ma14112838.
Shen, Y., Tu, Y., & Huang, W. (2022). Flexural Strength Evaluation of Multi-Cell Composite L-Shaped Concrete-Filled Steel Tubular Beams. Buildings, 12(1), 39. doi:10.3390/buildings12010039.
Jasim Hilo, S., Wan Badaruzzaman, W. H., Osman, S. A., & Al Zand, A. W. (2015). Axial Load Behavior of Acomposite Wall Strengthened with an Embedded Octagon Cold-Formed Steel. Applied Mechanics and Materials, 754–755, 437–441. doi:10.4028/www.scientific.net/amm.754-755.437.
Al-Shaikhli, M. S., Badaruzzaman, W. H. W., & Al Zand, A. W. (2022). Experimental and numerical study on the PSSDB system as two-way floor units. Steel and Composite Structures, 42(1), 33–48. doi:10.12989/scs.2022.42.1.033.
Dai, Y., Roy, K., Fang, Z., Chen, B., Raftery, G. M., & Lim, J. B. P. (2024). Buckling resistance of axially loaded cold-formed steel built-up stiffened box sections through experimental testing and finite element analysis. Engineering Structures, 302, 117379. doi:10.1016/j.engstruct.2023.117379.
He, Z., Peng, S., Zhou, X., Li, Z., Yang, G., & Zhang, Z. (2024). Design recommendation of cold-formed steel built-up sections under concentric and eccentric compression. Journal of Constructional Steel Research, 212, 108255. doi:10.1016/j.jcsr.2023.108255.
Yang, J., Luo, K., Wang, W., Shi, Y., & Li, H. (2024). Axial compressive behavior of cold-formed steel built-up box-shape columns with longitudinal stiffeners. Journal of Constructional Steel Research, 212, 108274. doi:10.1016/j.jcsr.2023.108274.
Yılmaz, Y., Öztürk, F., & Demir, S. (2024). Buckling behavior of cold-formed steel sigma and lipped channel section beam-columns: Experimental and numerical investigation. Journal of Constructional Steel Research, 214, 108456. doi:10.1016/j.jcsr.2024.108456.
Kumar, N., & Sahoo, D. R. (2016). Optimization of lip length and aspect ratio of thin channel sections under minor axes bending. Thin-Walled Structures, 100, 158–169. doi:10.1016/j.tws.2015.12.015.
Adil Dar, M., Subramanian, N., Anbarasu, M., Dar, A. R., & Lim, J. B. P. (2018). Structural performance of cold-formed steel composite beams. Steel and Composite Structures, 27(5), 545–554. doi:10.12989/scs.2018.27.5.545.
Al Zand, A. W., Alghaaeb, M. F., Liejy, M. C., Mutalib, A. A., & Al-Ameri, R. (2022). Stiffening Performance of Cold-Formed C-Section Beam Filled with Lightweight-Recycled Concrete Mixture. Materials, 15(9), 2982. doi:10.3390/ma15092982.
Al Zand, A. W., Badaruzzaman, W. H. W., Mutalib, A. A., & Hilo, S. J. (2018). Flexural Behavior of CFST Beams Partially Strengthened with Unidirectional CFRP Sheets: Experimental and Theoretical Study. Journal of Composites for Construction, 22(4), 4018018. doi:10.1061/(asce)cc.1943-5614.0000852.
Al Zand, A. W., Ali, M. M., Al-Ameri, R., Badaruzzaman, W. H. W., Tawfeeq, W. M., Hosseinpour, E., & Yaseen, Z. M. (2021). Flexural strength of internally stiffened tubular steel beam filled with recycled concrete materials. Materials, 14(21), 6334. doi:10.3390/ma14216334.
Ahmed, W., & Lim, C. W. (2021). Production of sustainable and structural fiber reinforced recycled aggregate concrete with improved fracture properties: A review. Journal of Cleaner Production, 279, 279. doi:10.1016/j.jclepro.2020.123832.
Liu, Z., Lu, Y., Li, S., Zong, S., & Yi, S. (2020). Flexural behavior of steel fiber reinforced self-stressing recycled aggregate concrete-filled steel tube. Journal of Cleaner Production, 274, 274. doi:10.1016/j.jclepro.2020.122724.
Fahmy, M. F. M., & Idriss, L. K. (2019). Flexural behavior of large scale semi-precast reinforced concrete T-beams made of natural and recycled aggregate concrete. Engineering Structures, 198. doi:10.1016/j.engstruct.2019.109525.
Zhang, H., Geng, Y., Wang, Y. Y., & Wang, Q. (2020). Long-term behavior of continuous composite slabs made with 100% fine and coarse recycled aggregate. Engineering Structures, 212, 212. doi:10.1016/j.engstruct.2020.110464.
Yang, Y. F., & Han, L. H. (2006). Experimental behaviour of recycled aggregate concrete filled steel tubular columns. Journal of Constructional Steel Research, 62(12), 1310–1324. doi:10.1016/j.jcsr.2006.02.010.
Yang, Y. F., & Man, L. H. (2006). Compressive and flexural behaviour of recycled aggregate concrete filled steel tubes (RACFST) under short-term loadings. Steel and Composite Structures, 6(3), 257–284. doi:10.12989/scs.2006.6.3.257.
Yang, Y. F., & Zhu, L. T. (2009). Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading. Steel and Composite Structures, 9(1), 19–38. doi:10.12989/scs.2009.9.1.019.
Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Thomas, B. (2022). Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Studies in Construction Materials, 17, 1149. doi:10.1016/j.cscm.2022.e01149.
Ahmed, K. S., & Rana, L. R. (2023). Fresh and hardened properties of concrete containing recycled waste glass: A review. Journal of Building Engineering, 70, 1063127. doi:10.1016/j.jobe.2023.106327.
Balasubramanian, B., Gopala Krishna, G. V. T., Saraswathy, V., & Srinivasan, K. (2021). Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Construction and Building Materials, 278, 278. doi:10.1016/j.conbuildmat.2021.122400.
Abeysinghe, S., Gunasekara, C., Bandara, C., Nguyen, K., Dissanayake, R., & Mendis, P. (2021). Engineering performance of concrete incorporated with recycled high-density polyethylene (HDPE)—A systematic review. Polymers, 13(11), 1885. doi:10.3390/polym13111885.
Tamrin, & Nurdiana, J. (2021). The effect of recycled HDPE plastic additions on concrete performance. Recycling, 6(1), 1–19. doi:10.3390/recycling6010018.
Karthika, R. B., Vidyapriya, V., Nandhini Sri, K. V., Merlin Grace Beaula, K., Harini, R., & Sriram, M. (2020). Experimental study on lightweight concrete using pumice aggregate. Materials Today: Proceedings, 43, 1606–1613. doi:10.1016/j.matpr.2020.09.762.
Kurt, M., Kotan, T., GüL, M. S., GüL, R., & Aydin, A. C. (2016). The effect of blast furnace slag on the self-compactability of pumice aggregate lightweight concrete. Sadhana - Academy Proceedings in Engineering Sciences, 41(2), 253–264. doi:10.1007/s12046-016-0462-2.
Metwally, I. M. (2007). Investigations on the performance of concrete made with blended finely milled waste glass. Advances in Structural Engineering, 10(1), 47–53. doi:10.1260/136943307780150823.
Yu, C. Q., Tong, J. Z., & Tong, G. S. (2021). Behavior and design of slender concrete-filled wide rectangular steel tubular columns under axial compression. Structures, 33, 3137–3146. doi:10.1016/j.istruc.2021.06.065.
Ravi Kumar B. S., Chandan M. B., Dayananda, N. S., Sunil Kumar, M. M., & Akarsh H. R. (2017). An Experimental Study on Lightweight Concrete by Partially Replacing of Normal Coarse Aggregate by Pumice Stone. International Journal for Scientific Research and Development, 5(2), 1982–1985.
Zhu, A., Zhang, X., Zhu, H., Zhu, J., & Lu, Y. (2017). Experimental study of concrete filled cold-formed steel tubular stub columns. Journal of Constructional Steel Research, 134, 17–27. doi:10.1016/j.jcsr.2017.03.003.
Al Zand, A. W., Wan Badaruzzaman, W. H., Ali, M. M., Hasan, Q. A., & Al-Shaikhli, M. S. (2020). Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners. Steel and Composite Structures, 34(1), 123–139. doi:10.12989/scs.2020.34.1.123.
Lu, Y., Zhou, T., Li, W., & Wu, H. (2017). Experimental investigation and a novel direct strength method for cold-formed built-up I-section columns. Thin-Walled Structures, 112, 125–139. doi:10.1016/j.tws.2016.12.011.
Rahnavard, R., Craveiro, H. D., Lopes, M., Simões, R. A., LaÃm, L., & Rebelo, C. (2022). Concrete-filled cold-formed steel (CF-CFS) built-up columns under compression: Test and design. Thin-Walled Structures, 179, 109603. doi:10.1016/j.tws.2022.109603.
DOI: 10.28991/CEJ-SP2024-010-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 ALMashhadani Duraid Ali Jasim, Leong Sing Wong, Sih Ying Kong, Ahmed Wadood Al-Zand

This work is licensed under a Creative Commons Attribution 4.0 International License.