Analysis and Development of Surface Distress Index Modified Based on Pavement Condition Index Criteria for Pavement Evaluation
Abstract
Doi: 10.28991/CEJ-2025-011-01-014
Full Text: PDF
Keywords
References
Sholevar, N., Golroo, A., & Esfahani, S. R. (2022). Machine learning techniques for pavement condition evaluation. Automation in Construction, 136(February), 104190. doi:10.1016/j.autcon.2022.104190.
Peraka, N. S. P., & Biligiri, K. P. (2020). Pavement asset management systems and technologies: A review. Automation in Construction, 119(March), 103336. doi:10.1016/j.autcon.2020.103336.
Zukhruf, F., Balijepalli, C., Bona Frazila, R., Suryo Nugroho, T., & Tsavalista Burhani, J. (2023). A new model of pavement maintenance, rehabilitation and reconstruction considering multimodal network development. Engineering Optimization, 55(7), 1118–1132. doi:10.1080/0305215X.2022.2061477.
Issa, A., Samaneh, H., & Ghanim, M. (2022). Predicting pavement condition index using artificial neural networks approach. Ain Shams Engineering Journal, 13(1), 101490. doi:10.1016/j.asej.2021.04.033.
Shtayat, A., Moridpour, S., Best, B., Shroff, A., & Raol, D. (2020). A review of monitoring systems of pavement condition in paved and unpaved roads. Journal of Traffic and Transportation Engineering, 7(5), 629–638. doi:10.1016/j.jtte.2020.03.004.
Attoh-Okine, N., & Adarkwa, O. (2013). Pavement condition surveys–overview of current practices. Delaware Center for Transportation, University of Delaware, Newark, United States.
Nautiyal, A., & Sharma, S. (2022). Methods and factors of prioritizing roads for maintenance: a review for sustainable flexible pavement maintenance program. Innovative Infrastructure Solutions, 7(3), 190. doi:10.1007/s41062-022-00771-6.
Hadiwardoyo, S. P., Correia, A. G., & Pereira, P. (2015). Road deterioration analysis for the national roads of Indonesia. Proceedings of the 14th International Conference on QIR (Quality in Research), 20-13 August, 2015, Lombok, Indonesia.
Hamdi, Hadiwardoyo, S. P., Correia, A. G., Pereira, P., & Cortez, P. (2017). Prediction of surface distress using neural networks. AIP Conference Proceedings, 1855. doi:10.1063/1.4985502.
Rosada, A., Arliansyah, J., & Buchari, E. (2019). Evaluation Pavement Deteriorating Condition on Surface Distress Index (SDI) Data Using Radial Basis Function Neural Networks (RBFNN). Journal of Physics: Conference Series, 1198(3), 1–8. doi:10.1088/1742-6596/1198/3/032008.
Setiadji, B. H., Purwanto, D., & Wicaksono, Y. I. (2020). Improvement of Potholes and Rutting Assessment in Surface Distress Index. In 2nd International Symposium on Transportation Studies in Developing Countries (ISTSDC 2019), Atlantis Press, 162-166. doi:10.2991/aer.k.200220.034.
SMD-03/RCS. (2011). Road Condition Survey Guideline. Implementation of Indonesian integrated road management system (IIRMS), Jakarta, Indonesia. (In Indonesian).
Setiadji, B. H. (2019). Proposed SDI equations to improve the effectiveness in evaluating crack damage on the road pavement. IOP Conference Series: Materials Science and Engineering, 650(1), 012007. doi:10.1088/1757-899X/650/1/012007.
Setiadji, B., Supriyono, & Purwanto, D. (2019). Surface Distress Index Updates to Improve Crack Damage Evaluation. Advances in Engineering Research, 186(APTE), 48–55,. doi:10.2991/apte-18.2019.10.
Pinatt, J. M., Chicati, M. L., Ildefonso, J. S., & Filetti, C. R. G. D. arc. (2020). Evaluation of pavement condition index by different methods: Case study of Maringá, Brazil. Transportation Research Interdisciplinary Perspectives, 4, 100100. doi:10.1016/j.trip.2020.100100.
Zhao, K., Ma, X., Zhang, H., & Dong, Z. (2022). Performance zoning method of asphalt pavement in cold regions based on climate Indexes: A case study of Inner Mongolia, China. Construction and Building Materials, 361, 129650. doi:10.1016/j.conbuildmat.2022.129650.
Ali, A. A., Milad, A., Hussein, A., Md Yusoff, N. I., & Heneash, U. (2023). Predicting pavement condition index based on the utilization of machine learning techniques: A case study. Journal of Road Engineering, 3(3), 266–278. doi:10.1016/j.jreng.2023.04.002.
Majidifard, H., Adu-Gyamfi, Y., & Buttlar, W. G. (2020). Deep machine learning approach to develop a new asphalt pavement condition index. Construction and Building Materials, 247, 118513. doi:10.1016/j.conbuildmat.2020.118513.
Shahin, M. Y. (2005). Pavement management for airports, roads, and parking lots: Second edition. Pavement Management for Airports, Roads, and Parking Lots (2nd Ed.), Springer., Cham, Switzerland.
Nur, W., Subagio, B. S., & Hariyadi, E. S. (2019). Relationship between the Pavement Condition Index (PCI), Present Serviceability Index (PSI), and Surface Distress Index on Soekarno Hatta Road, Bandung. Jurnal Teknik Sipil, 26(2), 111–120. doi:10.5614/jts.2019.26.2.3.
Wang, Z. (2000). Formulation and assessment of a customizable procedure for pavement distress index. Ph.D. Thesis, The University of Tennessee, Knoxville, United States.
Wu, K. (2015). Development of PCI-based pavement performance model for management of road infrastructure system. Master Thesis, Arizona State University, Tempe, United States.
Cho, N. H., Kwon, H. J., Suh, Y. C., & Kim, J. (2022). Development of Korea Airport Pavement Condition Index for Panel Rating. Applied Sciences (Switzerland), 12(16), 8320. doi:10.3390/app12168320.
Guha, S. K., Hossain, K., & Lawlor, M. (2022). An Economic Pavement Management Framework for Extremely Budget-and Resource-Constrained Agencies in Canada. Transportation Research Record, 2676(8), 554–570. doi:10.1177/03611981221084687.
Subagio, B. S., Prayoga, A. B., & Fadilah, S. R. (2022). Implementation of Mechanistic-Empirical Pavement Design Guide against Indonesian Conditions using Arizona Calibration. The Open Civil Engineering Journal, 16(1), 1-11. doi:10.2174/18741495-v16-e221026-2022-45.
Qureshi, W. S., Power, D., Ullah, I., Mulry, B., Feighan, K., McKeever, S., & O’Sullivan, D. (2023). Deep learning framework for intelligent pavement condition rating: A direct classification approach for regional and local roads. Automation in Construction, 153, 104945. doi:10.1016/j.autcon.2023.104945.
Jeong, H., Kim, H., Kim, K., & Kim, H. (2017). Prediction of flexible pavement deterioration in relation to climate change using fuzzy logic. Journal of infrastructure systems, 23(4), 04017008. doi:10.1061/(ASCE)IS.1943-555X.0000363.
Miah, M. T., Oh, E., Chai, G., & Bell, P. (2020). An overview of the airport pavement management systems (APMS). International Journal of Pavement Research and Technology, 13, 581-590. doi:10.1007/s42947-020-6011-8.
ASTM D6433-18. (2020). Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. ASTM International, Pennsylvania, United States. doi:10.1520/D6433-18.
Ali, A., Dhasmana, H., Hossain, K., & Hussein, A. (2021). Modeling pavement performance indices in harsh climate regions. Journal of Transportation Engineering, Part B: Pavements, 147(4), 04021049. doi:10.1061/JPEODX.0000305.
Setiaputri, H. A., Isradi, M., Rifai, A. I., Mufhidin, A., & Prasetijo, J. (2021). Analysis Of Urban Road Damage With Pavement Condition Index (PCI) And Surface Distress Index (SDI) Methods. World Journal of Innovation and Technology, 2(2), 82-91..
Abu Dabous, S., Zeiada, W., Al-Ruzouq, R., Hamad, K., & Al-Khayyat, G. (2021). Distress-based evidential reasoning method for pavement infrastructure condition assessment and rating. International Journal of Pavement Engineering, 22(4), 455–466. doi:10.1080/10298436.2019.1622012.
Twomey, J. M., & Smith, A. E. (1995). Performance measures, consistency, and power for artificial neural network models. Mathematical and Computer Modelling, 21(1–2), 243–258. doi:10.1016/0895-7177(94)00207-5.
Gharieb, M., Nishikawa, T., Nakamura, S., & Thepvongsa, K. (2022). Modeling of Pavement Roughness Utilizing Artificial Neural Network Approach for Laos National Road Network. Journal of Civil Engineering and Management, 28(4), 261–277. doi:10.3846/jcem.2022.15851.
Cano-Ortiz, S., Pascual-Muñoz, P., & Castro-Fresno, D. (2022). Machine learning algorithms for monitoring pavement performance. Automation in Construction, 139. doi:10.1016/j.autcon.2022.104309.
Tofallis, C. (2013). Measuring Relative Accuracy: A Better Alternative to Mean Absolute Percentage Error. SSRN Electronic Journal, 1-24. doi:10.2139/ssrn.2350688.
Montgomery, D. C., Runger, G. C., & Hubele, N. F. (2015). Engineering Statistics (5th Ed.). John Wiley & Sons, Hoboken, United States.
Loprencipe, G., & Pantuso, A. (2017). A specified procedure for distress identification and assessment for urban road surfaces based on PCI. Coatings, 7(5), 65. doi:10.3390/coatings7050065.
DOI: 10.28991/CEJ-2025-011-01-014
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Faisal Gerardo, Bambang Sugeng Subagio, Russ Bona Frazila, R. Sony Sulaksono Wibowo

This work is licensed under a Creative Commons Attribution 4.0 International License.