An Advanced Adaptive Mesh for Beam-Column Finite Elements on Transient Dynamic Analysis

Edgar David Mora Martinez, Naser Khaji

Abstract


This research examines the influence of truncation error reduction on the nonlinear dynamic analysis of complex framed structures. A modified -adaptive method, incorporating inertial and damping forces in addition to the common restitutive forces, is introduced to refine the mesh and enhance accuracy. To address convergence challenges arising from increased complexity, Ritz modal shapes are utilized to reconstruct the mass matrix, excluding detrimental modes. The proposed formulation is validated through rigorous computational models and experimental data. Six building case studies, varying in complexity, were analyzed using the modified -adaptive method. The results revealed substantial variations in frequency and displacement responses, ranging from 6% to 50% and 0.8% to 63%, respectively. These disparities underscore the significant influence of nonlinear behavior on structures with high-order shape functions. The proposed formulation is theoretically more accurate. Therefore, the findings emphasize the necessity of employing mesh refinement techniques to obtain accurate nonlinear dynamic analysis results, particularly for complex structures with pronounced nonlinear characteristics. This study contains the background of a software called MainModelingStr.

 

Doi: 10.28991/CEJ-2024-010-12-01

Full Text: PDF


Keywords


Beam-Column Elements; High-Order Elements; Nonlinear Elements; p- adaptivity; Generalized Alpha Method; Dynamic Analysis.

References


Fang, L. (2021). Error Estimation and Adaptive Refinement of Finite Element Thin Plate Spline. Ph.D. Thesis, Australian National University, Canberra, Australia.

Dong, Y., Yuan, S., & Xing, Q. (2019). Adaptive finite element analysis with local mesh refinement based on a posteriori error estimate of element energy projection technique. Engineering Computations (Swansea, Wales), 36(6), 2010–2033. doi:10.1108/EC-11-2018-0523.

Eisenträger, S., Atroshchenko, E., & Makvandi, R. (2020). On the condition number of high order finite element methods: Influence of p-refinement and mesh distortion. Computers and Mathematics with Applications, 80(11), 2289–2339. doi:10.1016/j.camwa.2020.05.012.

Wilson, S. G., Eaton, M. D., & Kópházi, J. (2024). Energy-Dependent, Self-Adaptive Mesh h(p)-Refinement of a Constraint-Based Continuous Bubnov-Galerkin Isogeometric Analysis Spatial Discretization of the Multi-Group Neutron Diffusion Equation with Dual-Weighted Residual Error Measures. Journal of Computational and Theoretical Transport, 53(2), 89–152. doi:10.1080/23324309.2024.2313460.

De Domenico, D., Ricciardi, G., & Takewaki, I. (2019). Design strategies of viscous dampers for seismic protection of building structures: A review. Soil Dynamics and Earthquake Engineering, 118, 144–165. doi:10.1016/j.soildyn.2018.12.024.

Sun, B., Zhang, Y., Dai, D., Wang, L., & Ou, J. (2023). Seismic fragility analysis of a large-scale frame structure with local nonlinearities using an efficient reduced-order Newton-Raphson method. Soil Dynamics and Earthquake Engineering, 164. doi:10.1016/j.soildyn.2022.107559.

Chatterjee, T., & Chowdhury, R. (2018). H–P Adaptive Model Based Approximation of Moment Free Sensitivity Indices. Computer Methods in Applied Mechanics and Engineering, 332, 572–599. doi:10.1016/j.cma.2018.01.011.

Bai, R., Gao, W. L., Liu, S. W., & Chan, S. L. (2020). Innovative high-order beam-column element for geometrically nonlinear analysis with one-element-per-member modelling method. Structures, 24, 542–552. doi:10.1016/j.istruc.2020.01.036.

Sharifnia, M. (2022). A higher-order nonlinear beam element for planar structures by using a new finite element approach. Acta Mechanica, 233(2), 495–511. doi:10.1007/s00707-021-03076-4.

Ho, P. L. H., Lee, C., Le, C. V., Nguyen, P. H., & Yee, J. J. (2024). A computational homogenization for yield design of asymmetric microstructures using adaptive BES-FEM. Computers and Structures, 294. doi:10.1016/j.compstruc.2023.107271.

Moslemi, H., & Tavakkoli, A. (2018). A Statistical Approach for Error Estimation in Adaptive Finite Element Method. International Journal for Computational Methods in Engineering Science and Mechanics, 19(6), 440–450. doi:10.1080/15502287.2018.1558424.

Gui, Q., Li, W., & Chai, Y. (2024). Improved modal analyses using the novel quadrilateral overlapping elements. Computers and Mathematics with Applications, 154, 138–152. doi:10.1016/j.camwa.2023.11.027.

Chopra, A. K. (2020). Dynamics Of Structures, Theory and Applications to Earthquake Engineering (5th Ed.). Pearson, Harlow, United Kingdom.

Ren, Z., He, Z., & Qi, Z. (2020). A temporal hybrid dynamic integration algorithm strategy for inelastic time history analysis of high-rise reinforced concrete structures under strong earthquakes. Structural Design of Tall and Special Buildings, 29(2), e1690. doi:10.1002/tal.1690.

He, Z., Ren, Z., Qi, Z., & Fu, S. (2021). A temporal–spatial hybrid dynamic algorithm strategy for inelastic earthquake response analysis of super high-rise building structures. Structural Design of Tall and Special Buildings, 30(14), e1885. doi:10.1002/tal.1885.

Hassan, M. M., Van Nguyen, D., Wook Choo, Y., & Kim, D. (2024). A simplified approach of numerical seismic model updating for deep braced excavation using centrifuge test. Results in Engineering, 21. doi:10.1016/j.rineng.2024.101849.

Liu, T., Huang, F., Wen, W., He, X., Duan, S., & Fang, D. (2021). Further insights of a composite implicit time integration scheme and its performance on linear seismic response analysis. Engineering Structures, 241. doi:10.1016/j.engstruct.2021.112490.

Bovo, M., Savoia, M., & Praticò, L. (2021). Seismic Performance Assessment of a Multistorey Building Designed with an Alternative Capacity Design Approach. Advances in Civil Engineering, 5178065. doi:10.1155/2021/5178065.

Chalarca, B., Filiatrault, A., & Perrone, D. (2024). Expected seismic response and annual seismic loss of viscously damped braced steel frames. Engineering Structures, 303. doi:10.1016/j.engstruct.2024.117569.

Ballinas, E., Guerrero, H., Terán-Gilmore, A., & Alberto Escobar, J. (2021). Seismic response comparison of an existing hospital structure rehabilitated with BRBs or conventional braces. Engineering Structures, 243. doi:10.1016/j.engstruct.2021.112666.

Belytschko, T., Liu, W. K., Moran, B., & Elkhodary, K. (2014). Nonlinear finite elements for continua and structures. John Wiley & Sons, Hoboken, United States.

Eldin, M. N., Dereje, A. J., & Kim, J. (2020). Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers. Engineering Structures, 208. doi:10.1016/j.engstruct.2019.109925.

De Angeli, S., Malamud, B. D., Rossi, L., Taylor, F. E., Trasforini, E., & Rudari, R. (2022). A multi-hazard framework for spatial-temporal impact analysis. International Journal of Disaster Risk Reduction, 73. doi:10.1016/j.ijdrr.2022.102829.

Gentile, R., & Galasso, C. (2021). Simplicity versus accuracy trade-off in estimating seismic fragility of existing reinforced concrete buildings. Soil Dynamics and Earthquake Engineering, 144. doi:10.1016/j.soildyn.2021.106678.

Abuteir, B. W., Harkati, E., Boutagouga, D., Mamouri, S., & Djeghaba, K. (2022). Thermo-mechanical nonlinear transient dynamic and Dynamic-Buckling analysis of functionally graded material shell structures using an implicit conservative/decaying time integration scheme. Mechanics of Advanced Materials and Structures, 29(27), 5773–5792. doi:10.1080/15376494.2021.1964115.

Song, C., Eisenträger, S., & Zhang, X. (2022). High-order implicit time integration scheme based on Padé expansions. Computer Methods in Applied Mechanics and Engineering, 390(2022), 1–43. doi:10.1016/j.cma.2021.114436.

Ji, Y., & Xing, Y. (2022). A two-step time integration method with desirable stability for nonlinear structural dynamics. European Journal of Mechanics, A/Solids, 94(2022), 1–19. doi:10.1016/j.euromechsol.2022.104582.

Nejati, F., Ghani, A. A. A., Yap, N. K., & Jafaar, A. Bin. (2021). Handling State Space Explosion in Component-Based Software Verification: A Review. IEEE Access, 9, 77526–77544. doi:10.1109/ACCESS.2021.3081742.

Lee, C., Bathe, K. J., & Noh, G. (2024). Stability of the Bathe implicit time integration methods in the presence of physical damping. Computers and Structures, 295. doi:10.1016/j.compstruc.2024.107294.

Lavrenčič, M., & Brank, B. (2020). Comparison of numerically dissipative schemes for structural dynamics: Generalized-alpha versus energy-decaying methods. Thin-Walled Structures, 157(2020), 1–22. doi:10.1016/j.tws.2020.107075.

Jančič, M., & Kosec, G. (2024). Strong form mesh-free p-adaptive solution of linear elasticity problem. Engineering with Computers, 40(2), 1027–1047. doi:10.1007/s00366-023-01843-6.

Mora, E. D., & Khaji, N. (2023). Complexity Adaptation Strategy for Order-Adaptive Elements. Proceedings of the Seventeenth International Conference on Civil, Structural and Environmental Engineering Computing, 6, 1–10. doi:10.4203/ccc.6.13.5.

IEEE. (2019)."IEEE Standard for Floating-Point Arithmetic," in IEEE Std. 754-2019 (Revision of IEEE 754-2008), 1-84, 22 July 2019. doi:10.1109/IEEESTD.2019.8766229.

Ribeiro Almeida, L. P., Souza Santana, H. M., & da Rocha, F. C. (2020). Analysis of high-order approximations by spectral interpolation applied to one-and two-dimensional finite element method. Journal of Applied and Computational Mechanics, 6(1), 145–159. doi:10.22055/jacm.2019.28771.1511.

Chen, G., Qian, L., & Yin, Q. (2014). Dynamic analysis of a timoshenko beam subjected to an accelerating mass using spectral element method. Shock and Vibration, 2014, 1–12. doi:10.1155/2014/768209.

Felippa, C. A., & Oñate, E. (2021). Accurate Timoshenko Beam Elements for Linear Elastostatics and LPB Stability. Archives of Computational Methods in Engineering, 28(3), 2021–2080. doi:10.1007/s11831-020-09515-0.

Katili, I. (2017). Unified and integrated approach in a new Timoshenko beam element. European Journal of Computational Mechanics, 26(3), 282–308. doi:10.1080/17797179.2017.1328643.

Moallemi-Oreh, A., & Karkon, M. (2013). Finite element formulation for stability and free vibration analysis of timoshenko beam. Advances in Acoustics and Vibration, 2013, 1–7. doi:10.1155/2013/841215.

Öchsner, A. (2020). Euler–Bernoulli Beams and Frames. Computational Statics and Dynamics, Springer, Singapore. doi:10.1007/978-981-15-1278-0_3.

Liu, J., Möller, M., & Schuttelaars, H. M. (2021). Balancing truncation and round-off errors in FEM: One-dimensional analysis. Journal of Computational and Applied Mathematics, 386. doi:10.1016/j.cam.2020.113219.

Cheney, W., & Kingaid, D. (2012). Numerical Mathematics and Computing (7th Ed.). Cengage Learning, Boston, United States.

Paige, C. C., & Saunders, M. A. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical Software (TOMS), 8(1), 43–71. doi:10.1145/355984.355989.

Bruschi, E., Calvi, P. M., & Quaglini, V. (2021). Concentrated plasticity modelling of RC frames in time-history analyses. Engineering Structures, 243. doi:10.1016/j.engstruct.2021.112716.

Mazza, F. (2014). A distributed plasticity model to simulate the biaxial behaviour in the nonlinear analysis of spatial framed structures. Computers and Structures, 135, 141–154. doi:10.1016/j.compstruc.2014.01.018.

Park, K., Kim, H., & Kim, D. J. (2019). Generalized Finite Element Formulation of Fiber Beam Elements for Distributed Plasticity in Multiple Regions. Computer-Aided Civil and Infrastructure Engineering, 34(2), 146–163. doi:10.1111/mice.12389.

Ahmed, M., Liang, Q. Q., Patel, V. I., & Hamoda, A. (2024). Inelastic analysis of octagonal concrete-filled steel tubular short columns under eccentric loading. Structural Concrete, 25(2), 1418–1433. doi:10.1002/suco.202300360.

Zhang, H., Han, Q., Wang, Y., & Lu, Y. (2016). Explicit modeling of damping of a single-layer latticed dome with an isolation system subjected to earthquake ground motions. Engineering Structures, 106, 154–165. doi:10.1016/j.engstruct.2015.10.027.

Tian, K., Wang, Y., Cao, D., & Yu, K. (2024). Approximate global mode method for flutter analysis of folding wings. International Journal of Mechanical Sciences, 265. doi:10.1016/j.ijmecsci.2023.108902.

Chaikittiratana, A., & Wattanasakulpong, N. (2022). Gram-Schmidt-Ritz method for dynamic response of FG-GPLRC beams under multiple moving loads. Mechanics Based Design of Structures and Machines, 50(7), 2427–2448. doi:10.1080/15397734.2020.1778488.

Du, X., Nie, Y., Xia, H., Zhang, N., & Guo, W. (2022). A single-step recursive representation of foundation flexibility functions to soil-structure interaction using first-order IIR filters. Soil Dynamics and Earthquake Engineering, 153. doi:10.1016/j.soildyn.2021.107123.

Chang, T. L., & Lee, C. L. (2022). Numerical simulation of generalised Maxwell-type viscous dampers with an efficient iterative algorithm. Mechanical Systems and Signal Processing, 170. doi:10.1016/j.ymssp.2021.108795.

Haghani, M., Navayi Neya, B., Ahmadi, M. T., & Vaseghi Amiri, J. (2020). Combining XFEM and time integration by α-method for seismic analysis of dam-foundation-reservoir. Theoretical and Applied Fracture Mechanics, 109. doi:10.1016/j.tafmec.2020.102752.

Yang, J., Xia, Y., Lei, X., & Sun, L. (2022). Hysteretic parameters identification of RC frame structure with Takeda model based on modified CKF method. Bulletin of Earthquake Engineering, 20(9), 4673–4696. doi:10.1007/s10518-022-01368-1.

Monti, G., & Petrone, F. (2015). Yield and ultimate moment and curvature closed-form equations for reinforced concrete sections. ACI Structural Journal, 112(4), 463–474. doi:10.14359/51687747.

SeismoStruct. (2010). A computer program for static and dynamic nonlinear analysis of framed structures. Seismosoft Earthquake Engineering Software Solutions - Seismosoft, Pavia, Italy.

Zhu, M., McKenna, F., & Scott, M. H. (2018). OpenSeesPy: Python library for the OpenSees finite element framework. SoftwareX, 7(2018), 6–11. doi:10.1016/j.softx.2017.10.009.

Pankrath, H., Mora, D., Jiménez, E., Knut, A., & Sandig, F. (2020). Development of shaking table tests for seismic slope stability problems. SCG-XIII International Symposium on Landslides, 15-19 June, 2020, Cartagena, Colombia.

Joseph, R., Mwafy, A., & Alam, M. S. (2023). Shake-table testing and numerical simulation to select the FRCM retrofit solution for flexure/shear deficient RC frames. Journal of Building Engineering, 69. doi:10.1016/j.jobe.2023.106248.

Mwafy, A., & Almorad, B. (2019). Verification of performance criteria using shake table testing for the vulnerability assessment of reinforced concrete buildings. Structural Design of Tall and Special Buildings, 28(7), e1601. doi:10.1002/tal.1601.

Krawinkler, H. (1988). Scale effects in static and dynamic model testing of structures. Proceedings of the Ninth World Conference on Earthquake Engineering, 2-9 August, 1988, Tokyo, Japan.

Zhang, N., Gu, Q., Huang, S., Chang, R., & Yang, T. Y. (2023). A smart component model replacement approach for refined simulation of large nonlinear RC structures. Computers and Structures, 289. doi:10.1016/j.compstruc.2023.107184.

Abtahi, S., & Li, Y. (2023). Efficient modeling of steel bar slippage effect in reinforced concrete structures using a newly implemented nonlinear element. Computers and Structures, 279. doi:10.1016/j.compstruc.2022.106958.

Valipour, H. R., & Foster, S. J. (2009). Nonlocal Damage Formulation for a Flexibility-Based Frame Element. Journal of Structural Engineering, 135(10), 1213–1221. doi:10.1061/(asce)st.1943-541x.0000054.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-12-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Naser Khaji

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message