Optionally Reinforced Columns Under Simulated Seismic and Time Varying Axial Loads: Advanced HYLSER-2 Testing

Jelena Ristic, Zijadin Guri, Danilo Ristic

Abstract


Steel- and composite-reinforced columns (SRC and CRC columns) provide alternative solutions for common and harsh environments. Although extensive research has been conducted on these columns, direct comparative studies of SRC and CRC columns under seismic conditions, with consistent testing and realistic load simulations, remain limited. This study examined the nonlinear seismic responses of nine ordinary steel-reinforced concrete column models constructed alternatively with normal-strength and high-strength concretes under simulated earthquakes and time-varying axial loads. A developed advanced HYLSER-2 seismic testing system was employed to conduct seismic tests. Spiral transversal reinforcement with pitches of 6.0 and 9.0 cm was used to explore the effects of concrete confinement. The HYLSER-2 seismic tests, conducted under various interactively simulated earthquake intensities and time-varying axial loads, yielded crucial experimental results. Additionally, an extensive complementary analytical study was conducted to provide comparative insights between steel-reinforced columns (SRC) and composite-reinforced columns (CRC) with novel glass fiber-reinforced (GFRP) bars. The analytical study was conducted using experimentally proven advanced nonlinear analytical micromodels. The analytical results highlight the hysteretic behavior of columns reinforced with ordinary steel and novel GFRP reinforcing bars under the simulated combined effects of reversed cyclic bending and time-varying axial loads. The findings form a critical basis for advancing seismic design strategies for SRC and CRC columns exposed to strong earthquakes and high-time variations in axial loads.

 

Doi: 10.28991/CEJ-2024-010-10-09

Full Text: PDF


Keywords


Concrete; Columns; Steel Bars; Glass Fiber-Reinforced Plastic (GFRP); Testing; Earthquakes; Nonlinear Response.

References


Raza, S., Menegon, S. J., Tsang, H. H., & Wilson, J. L. (2022). Axial Load Variation of Columns in Symmetrical RC Buildings Subject to Bidirectional Lateral Actions in Regions of Low to Moderate Seismicity. Journal of Earthquake Engineering, 26(5), 2701–2729. doi:10.1080/13632469.2020.1772151.

Di Ludovico, M., Verderame, G. M., Prota, A., Manfredi, G., & Cosenza, E. (2013). Experimental Behavior of Nonconforming RC Columns with Plain Bars under Constant Axial Load and Biaxial Bending. Journal of Structural Engineering, 139(6), 897–914. doi:10.1061/(asce)st.1943-541x.0000703.

Qiu, F., Li, W., Pan, P., & Qian, J. (2002). Experimental tests on reinforced concrete columns under biaxial quasi-static loading. Engineering Structures, 24(4), 419–428. doi:10.1016/S0141-0296(01)00108-0.

Raza, S., Menegon, S. J., Tsang, H. H., & Wilson, J. L. (2020). Force-displacement behavior of limited ductile high-strength RC columns under bidirectional earthquake actions. Engineering Structures, 208, 110278. doi:10.1016/j.engstruct.2020.110278.

Rodrigues, H., Arêde, A., Varum, H., & Costa, A. G. (2013). Experimental evaluation of rectangular reinforced concrete column behaviour under biaxial cyclic loading. Earthquake Engineering and Structural Dynamics, 42(2), 239–259. doi:10.1002/eqe.2205.

Rodrigues, H., Varum, H., Arêde, A., & Costa, A. (2012). A comparative analysis of energy dissipation and equivalent viscous damping of RC columns subjected to uniaxial and biaxial loading. Engineering Structures, 35, 149–164. doi:10.1016/j.engstruct.2011.11.014.

Raza, S., Tsang, H. H., & Wilson, J. L. (2018). Unified models for post-peak failure drifts of normal- and high-strength RC columns. Magazine of Concrete Research, 70(21), 1081–1101. doi:10.1680/jmacr.17.00375.

Raza, S., Menegon, S. J., Tsang, H.-H., & Wilson, J. L. (2020). Collapse Performance of Limited Ductile High-Strength RC Columns under Unidirectional Cyclic Actions. Journal of Structural Engineering, 146(10), 1943–541 0002772. doi:10.1061/(asce)st.1943-541x.0002772.

Menegon, S. J., Wilson, J. L., Lam, N. T. K., & McBean, P. (2018). RC walls in Australia: seismic design and detailing to AS 1170.4 and AS 3600. Australian Journal of Structural Engineering, 19(1), 67–84. doi:10.1080/13287982.2017.1410309.

Wilson, J. L., Wibowo, A., Lam, N. T. K., & Gad, E. F. (2015). Drift behaviour of lightly reinforced concrete columns and structural walls for seismic design applications. Australian Journal of Structural Engineering, 16(1), 62–74. doi:10.7158/S14-002.2015.16.1.

He, R., Yang, Y., & Sneed, L. H. (2015). Seismic Repair of Reinforced Concrete Bridge Columns: Review of Research Findings. Journal of Bridge Engineering, 20(12), 4015015. doi:10.1061/(asce)be.1943-5592.0000760.

Raza, S., Khan, M. K. I., Menegon, S. J., Tsang, H. H., & Wilson, J. L. (2019). Strengthening and repair of reinforced concrete columns by jacketing: State-of-the-art review. Sustainability (Switzerland), 11(11), 3208. doi:10.3390/su11113208.

De Luca, A., Matta, F., & Nanni, A. (2009). Behavior of full-scale concrete columns internally reinforced with glass FRP bars under pure axial load. Composites & Polycon, 15-17 January 2009, Tampa, Unites States.

Guri, Z., Kokalanov, G., Ristic, D. & Ristic, J. (2018). Modeling of Circular Columns with Ordinary and Composite Reinforcement. Proceedings of International Conference, Earthquake Engineering and Engineering Seismology, 13-15 June, 2018, Kraljevo, Serbia.

Guri, Z., & Misini, M. (2021). Experimental and numerical study of circular columns reinforced with steel and glass FRP bars. Magazine of Concrete Research, 73(4), 163–173. doi:10.1680/jmacr.19.00003.

ACI 440.1R-06. (2006). Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. American Concrete Institute (ACI), Michigan, United States.

CAN/CSA-S806-02. (2002). Design and Construction of Building Components with Fibre Reinforced Polymers. Canadian Standards Association (CSA), Toronto, Canada.

Deitz, D. H., Harik, I. E., & Gesund, H. (2003). Physical Properties of Glass Fiber Reinforced Polymer Rebars in Compression. Journal of Composites for Construction, 7(4), 363–366. doi:10.1061/(asce)1090-0268(2003)7:4(363).

Tobbi, H., Farghaly, A. S., & Benmokrane, B. (2012). Concrete columns reinforced longitudinally and transversally with glass fiber-reinforced polymer bars. ACI Structural Journal, 109(4), 551–558. doi:10.14359/51683874.

Hadi, M. N. S., Karim, H., & Sheikh, M. N. (2016). Experimental Investigations on Circular Concrete Columns Reinforced with GFRP Bars and Helices under Different Loading Conditions. Journal of Composites for Construction, 20(4), 04016009. doi:10.1061/(asce)cc.1943-5614.0000670.

Nanni, A. (1993). Flexural Behavior and Design of RC Members Using FRP Reinforcement. Journal of Structural Engineering, 119(11), 3344–3359. doi:10.1061/(asce)0733-9445(1993)119:11(3344).

Elchalakani, M., Ma, G., Aslani, F., & Duan, W. (2017). Design of GFRP-reinforced rectangular concrete columns under eccentric axial loading. Magazine of Concrete Research, 69(17), 865–877. doi:10.1680/jmacr.16.00437.

Weber, A. (2006). Advanced reinforcement technology with GFRP Rebar. Proceedings 2nd International fib Congress. 5-8 June, 2006, Naples, Italy.

Alkhattabi, L., Ali, A. H., Mohamed, H. M., & Gouda, A. (2024). Strain Behavior of Short Concrete Columns Reinforced with GFRP Spirals. Buildings, 14(7), 2180. doi:10.3390/buildings14072180.

Zhang, X., Zhou, Y., Liu, X., Zheng, Y., & Qi, Z. (2024). Study on Seismic Performance of RC Frame Structures Considering the Effect of Infilled Walls. Buildings, 14(7), 14. doi:10.3390/buildings14071907.

Xu, Q., Qian, J., Zhang, Y., Tang, L., Man, D., Zhen, X., & Han, T. (2024). Analysis of Progressive Collapse Resistance in Precast Concrete Frame with a Novel Connection Method. Buildings, 14(6), 1814. doi:10.3390/buildings14061814.

Kalogeropoulos, G., Tsonos, A. D., & Iakovidis, P. (2024). Hysteresis Behavior of RC Beam–Column Joints of Existing Substandard RC Structures Subjected to Seismic Loading–Experimental and Analytical Investigation. Buildings, 14(6), 1609. doi:10.3390/buildings14061609.

Handhal, M. M., Abdulghani, A. W., & Al-Haydary, M. M. (2023). Structural Behavior of Steel Reinforced Concrete Joint Under Flexural Loads. Civil Engineering Journal (Iran), 9(3), 714–730. doi:10.28991/CEJ-2023-09-03-015.

Zhou, Y., Liu, X., Zhang, X., & Guo, X. (2024). Investigation on Seismic Performance of Reinforced Concrete Frame Retrofitted by Carbon Fiber-Reinforced Polymer. Buildings, 14(6). doi:10.3390/buildings14061604.

Hassooni, A. N., & Al-Zaidee, S. R. (2022). Rehabilitation of Composite Column Subjected to Axial Load. Civil Engineering Journal (Iran), 8(3), 595–611. doi:10.28991/CEJ-2022-08-03-013.

Okada, T., & Seki, M. (1977). A simulation of earthquake response of reinforced concrete buildings. 6th World Conference on Earthquake Engineering, 10-14 January, 1977, New Delhi, India,

Takanashi, K., Udagawa, K., & Tanaka, H. (1980). Pseudo-Dynamic Tests on a 2-Story Steel Frame By Computer-Load Test Apparatus Hybrid System. Proceedings 7th World Conference on Earthquake Engineering, Istanbul, 8-13 September, Istanbul, Turkey.

Okada, T., Seki, M., & Park, Y. J. (1980). Simulation of Earthquake Response of Reinforced Concrete Building Frames to Bi-Directional Ground Motion by IIS Computer-Actuator on-Line System. Proceedings of the 7th World Conference on Earthquake Engineering, 8-13 September, Istanbul, Turkey.

Yamada, Y., & Iemura, H. (1982). Hybrid Analysis on Earthquake Response of Deteriorating Hysteretic Structures. Proceedings of the Sino-American Symposium on Bridge and Structural Engineering, 13–19 September, 1982, Beijing, China.

Ristic, D. (1988). Nonlinear behavior and stress-strain based modeling of reinforced concrete structures under earthquake induced bending and varying axial loads. Ph.D. Thesis, School of Civil Engineering, Kyoto University, Kyoto, Japan.

Pang, L., Han, Z., Xiao, J., Liu, Z., Qu, W., & Dong, S. (2024). Bearing Capacity of Hybrid (Steel and GFRP) Reinforced Columns under Eccentric Loading: Theory and Experiment. Buildings, 14(8), 2472. doi:10.3390/buildings14082472.

Hadhood, A., Gouda, M. G., Agamy, M. H., Mohamed, H. M., & Sherif, A. (2020). Torsion in concrete beams reinforced with GFRP spirals. Engineering Structures, 206, 110174. doi:10.1016/j.engstruct.2020.110174.

Alsuhaibani, E., Alturki, M., Alogla, S. M., Alawad, O., Alkharisi, M. K., Bayoumi, E., & Aldukail, A. (2024). Compressive and Bonding Performance of GFRP-Reinforced Concrete Columns. Buildings, 14(4), 1071. doi:10.3390/buildings14041071.

Guo, R., Zhang, H., Chen, K., Song, Y., Li, H., Ding, L., & Liu, Y. (2024). Seismic Performance Analysis of Concrete Columns Reinforced with Prestressed Wire Ropes Embedded in Polyurethane Cement Composites. Buildings, 14(4), 993. doi:10.3390/buildings14040993.

Rhouma, M. Ben, Maazoun, A., Aminou, A., Belkassem, B., Vandenbruwane, I., Tysmans, T., & Lecompte, D. (2024). Blast Loading of Small-Scale Circular RC Columns Using an Explosive-Driven Shock Tube. Buildings, 14(4), 921. doi:10.3390/buildings14040921.

Chang, G. A., & Mander, J. B. (1994). Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part I-Evaluation of Seismic Capacity. Technical Report No. Nceer-94-0006.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-10-09

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Zijadin Faik GURI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message