Impact of Vertical Vibration on Group Piles During Earthquake Loading: Experimental Findings

Bilal J. Noman, Bushra S. Albusoda

Abstract


This study presents novel research on the impact of vertical vibration on the dynamic response of pile groups embedded in stratified soil under seismic loading conditions. An experimental setup was employed wherein the piled machine foundation was subjected to vertical vibrations at three operating frequencies (10, 20, and 30 Hz) and subsequently exposed to four levels of seismic acceleration (0.1 g, 0.34 g, 0.77 g, and 0.82 g). Piles with a length-to-diameter ratio of 25 were embedded in a stratified soil profile, with an upper loose layer (30% relative density) and a lower dense layer (80% relative density) acting as end-bearing. Measurements and analyses of horizontal and vertical accelerations, and amplification factors were conducted using the Fast Fourier Transform (FFT), spectral acceleration (Sa), and variation of acceleration with depth. The results demonstrated a significant reduction in horizontal acceleration, with a peak ground acceleration (PGA) reduction of up to 64% in average, particularly at higher frequencies such as 30 Hz. The mitigation efficiency at 30Hz improved with increasing PGA, showing reductions of 42, 68, 75, and 63% for seismic accelerations of 0.1 g, 0.34 g, 0.77 g, and 0.82 g, respectively. The analysis further revealed harmonic resonance and higher mode effects at lower frequencies, with nonlinear soil behavior affecting the resonance and amplification patterns. Additionally, the results demonstrate that the far-field accelerations exceeded the near-field accelerations within the pile group, particularly in the surface layer. The results indicated that the initial vibration amplitudes exceeded the safe operating limits outlined in ACI 351.3R-18 under seismic loading, particularly at higher seismic acceleration levels and lower frequencies. Additional modified charts were presented to account for these conditions. The results presented promising evidence for using vertical vibrations as an earthquake-mitigation strategy. However, avoiding operating at frequencies less than 10 Hz is recommended because of the potential resonance and interaction with horizontal accelerations during earthquakes.

 

Doi: 10.28991/CEJ-SP2024-010-010

Full Text: PDF


Keywords


Seismic Mitigation; Vertical Vibration; Machine Vibration Charts; Pile Foundations; Spectral Acceleration (SA); Fast Fourier Transform (FFT).

References


Novak, M. (1974). Dynamic Stiffness and Damping of Piles. Canadian Geotechnical Journal, 11(4), 574–598. doi:10.1139/t74-059.

Novak, M. (1977). Vertical Vibration of Floating Piles. ASCE Journal of the Engineering Mechanics Division, 103(1), 153–168. doi:10.1061/jmcea3.0002201.

Novak, M., & El Sharnouby, B. (1983). Stiffness constants of single piles. Journal of Geotechnical Engineering, 109(7), 961–974. doi:10.1061/(ASCE)0733-9410(1983)109:7(961).

Novak, M., & Aboul-Ella, F. (1978). Impedance Functions of Piles in Layered Media. Journal of the Engineering Mechanics Division, 104(3), 643–661. doi:10.1061/jmcea3.0002366.

Novak, M., & Aboul-Ella, F. (1978). Stiffness and Damping of Piles in Layered Media. Earthquake Engineering and Soil Dynamics-Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, 19-21 June, 1978, Pasadena, United States.

Novak, M. & Sheta, M. (1980). Approximate approach to contact effects of piles. Special technical publication on dynamic response of pile foundations: Analytical aspects. Proceedings of the Geotechnical Engineering Division, ASCE (1980), 53-79

Ei Naggar, M. H., & Novak, M. (1995). Effect of foundation nonlinearity on modal properties of offshore towers. Journal of Geotechnical Engineering, 121(9), 660–668. doi:10.1061/(asce)0733-9410(1995)121:9(660).

El Naggar, M. H., & Novak, M. (1996). Nonlinear analysis for dynamic lateral pile response. Soil Dynamics and Earthquake Engineering, 15(4), 233–244. doi:10.1016/0267-7261(95)00049-6.

Asgarian, B., Assareh, M. A., & Alanjari, P. (2008). Nonlinear Behavior of Single Piles in Jacket Type Offshore Platforms Using Incremental Dynamic Analysis. Volume 2: Structures, Safety and Reliability, 139–148. doi:10.1115/omae2008-57148.

Chau, K. T., & Yang, X. (2005). Nonlinear Interaction of Soil–Pile in Horizontal Vibration. Journal of Engineering Mechanics, 131(8), 847–858. doi:10.1061/(asce)0733-9399(2005)131:8(847).

Krishnan, R., Gazetas, G., & Velez, A. (1983). Static and dynamic lateral deflexion of piles in non-homogeneous soil stratum. Geotechnique, 33(3), 307–325. doi:10.1680/geot.1983.33.3.307.

Wu, G., & Finn, W. D. L. (1997). Dynamic elastic analysis of pile foundations using finite element method in the frequency domain. Canadian Geotechnical Journal, 34(1), 34–43. doi:10.1139/t96-87.

Kaynia, A. M. (1982). Dynamic stiffness and seismic response of pile groups. Ph.D. Thesis, Massachusetts Institute of technology, Cambridge, United States.

Banerjee, P. K., Sen, R., & Davies, T. G. (1987). Static and dynamic analyses of axially and laterally loaded piles and pile groups. Gulf Publishing Co, Houston, United States.

Ayothiraman, R., & Boominathan, A. (2006). Observed and Predicted Dynamic Lateral Response of Single Pile in Clay. Soil and Rock Behavior and Modeling, 367–374. doi:10.1061/40862(194)49.

Fattah, M. Y., Hamood, M. J., & Al-Naqdi, I. A. A. (2015). Finite-element analysis of a piled machine foundation. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 168(6), 421–432. doi:10.1680/stbu.14.00053.

Fattah, M. Y., Hamood, M. J., & Al-Nakdy, I. A. M. (2020). Dynamic Response of Machine Foundation Resting on End Bearing Piles. IOP Conference Series: Materials Science and Engineering, 978(1), 12038. doi:10.1088/1757-899X/978/1/012038.

M. Al-Nakdy, I., Y. Fattah, M., & J. Hamood, M. (2014). Finite Element Analysis of Machine Foundation Resting on End Bearing Piles. Engineering and Technology Journal, 32(1A), 132–153. doi:10.30684/etj.32.1a.11.

Al-Jeznawi, D., Jais, I. B. M., & Albusoda, B. S. (2022). a Soil-Pile Response Under Coupled Static-Dynamic Loadings in Terms of Kinematic Interaction. Civil and Environmental Engineering, 18(1), 96–103. doi:10.2478/cee-2022-0010.

Al-Jeznawi, D., Mohamed Jais, I. B., Albusoda, B. S., & Khalid, N. (2022). Numerical modeling of single closed and open-ended pipe pile embedded in dry soil layers under coupled static and dynamic loadings. Journal of the Mechanical Behavior of Materials, 31(1), 587–594. doi:10.1515/jmbm-2022-0055.

Al-Jeznawi, D., Mohamed Jais, I. B., Albusoda, B. S., & Khalid, N. (2022). The slenderness ratio effect on the response of closed-end pipe piles in liquefied and non-liquefied soil layers under coupled static-seismic loading. Journal of the Mechanical Behavior of Materials, 31(1), 83–89. doi:10.1515/jmbm-2022-0009.

Fattah, M. Y., Zbar, B. S., & Mustafa, F. S. (2017). Vertical vibration capacity of a single pile in dry sand. Marine Georesources & Geotechnology, 35(8), 1111–1120. doi:10.1080/1064119X.2017.1294219.

Fattah, M. Y., Zbar, B. S., & Mustafa, F. S. (2021). Effect of soil saturation on load transfer in a pile excited by pure vertical vibration. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 174(2), 132–144. doi:10.1680/jstbu.16.00206.

Fattah, M. Y., Zabar, B. S., & Mustafa, F. S. (2020). Effect of saturation on response of a single pile embedded in saturated sandy soil to vertical vibration. European Journal of Environmental and Civil Engineering, 24(3), 381–400. doi:10.1080/19648189.2017.1391126.

Choudhary, S. S., Biswas, S., & Manna, B. (2016). Dynamic coupled response of 6-pile groups with different pile arrangements. Japanese Geotechnical Society Special Publication, 2(38), 1389–1392. doi:10.3208/jgssp.ind-15.

Khandelwal, M., Bharathi, M., & Mukerjee, S. (2016). Behaviour of short pile under machine induced horizontal vibrations. International Geotechnical Engineering Conference on Sustainability in Geotechnical Engineering Practices and Related Urban Issues, 23-24 September, 2016, Mumbai, India.

Biswas, S., & Manna, B. (2018). Experimental and Theoretical Studies on the Nonlinear Characteristics of Soil-Pile Systems under Coupled Vibrations. Journal of Geotechnical and Geoenvironmental Engineering, 144(3), 4018007. doi:10.1061/(asce)gt.1943-5606.0001850.

Bhowmik, D., Baidya, D. K., & Dasgupta, S. P. (2013). A numerical and experimental study of hollow steel pile in layered soil subjected to lateral dynamic loading. Soil Dynamics and Earthquake Engineering, 53, 119–129. doi:10.1016/j.soildyn.2013.06.011.

Bhowmik, D., Baidya, D. K., & Dasgupta, S. P. (2016). A numerical and experimental study of hollow steel pile in layered soil subjected to vertical dynamic loading. Soil Dynamics and Earthquake Engineering, 85, 161–165. doi:10.1016/j.soildyn.2016.03.017.

Bharathi, M., Dubey, R. N., & Shukla, S. K. (2022). Dynamic response of underreamed batter piles subjected to vertical vibration. International Journal of Geotechnical Engineering, 16(8), 991–999. doi:10.1080/19386362.2021.2025304.

Choudhary, S. S., Biswas, S., & Manna, B. (2020). Experimental and numerical study of pile foundations subjected to rotating machine-induced coupled excitations. International Journal of Geotechnical Engineering, 14(6), 614–625. doi:10.1080/19386362.2019.1620536.

Choudhary, S. S., Biswas, S., & Manna, B. (2021). Effect of Pile Arrangements on the Dynamic Coupled Response of Pile Groups. Geotechnical and Geological Engineering, 39(3), 1963–1978. doi:10.1007/s10706-020-01599-6.

Sudhi, D., Sinha, S. K., Biswas, S., & Manna, B. (2023). Dynamic impedance parameters of floating piles subjected to coupled harmonic vibration. Arabian Journal of Geosciences, 16(9), 508. doi:10.1007/s12517-023-11615-7.

Dihoru, L., Bhattacharya, S., Taylor, C. A., Muir Wood, D., Moccia, F., Simonelli, A. L., & Mylonakis, G. (2009). Experimental modeling of kinematic bending moments of piles in layered soils. Interface, 1, 1-8.

Papazafeiropoulos, G., & Plevris, V. (2023). Kahramanmaraş—Gaziantep, Türkiye Mw 7.8 Earthquake on 6 February 2023: Strong Ground Motion and Building Response Estimations. Buildings, 13(5), 1194. doi:10.3390/buildings13051194.

Kavvads, M., & Gazetas, G. (1993). Kinematic seismic response and bending of free-head piles in layered soil. Géotechnique, 43(2), 207–222. doi:10.1680/geot.1993.43.2.207.

Mylonakis, G., Nikolaou, A., & Gazetas, G. (1997). Soil-pile-bridge seismic interaction: Kinematic and inertial effects. Part I: Soft soil. Earthquake Engineering & Structural Dynamics, 26(3), 337–359. doi:10.1002/(SICI)1096-9845(199703)26:3<337::AID-EQE646>3.0.CO;2-D.

Boulanger, R. W., Curras, C. J., Kutter, B. L., Wilson, D. W., & Abghari, A. (1999). Seismic Soil-Pile-Structure Interaction Experiments and Analyses. Journal of Geotechnical and Geoenvironmental Engineering, 125(9), 750–759. doi:10.1061/(asce)1090-0241(1999)125:9(750).

Youssef, A., Hegazy, M., & Mostafa, H. (2023). Performance of Isolated Footing with Several Corrosion Levels under Axial Loading. Civil Engineering Journal, 9(6), 1437-1455. doi:10.28991/CEJ-2023-09-06-011.

Liu, Z. (John). (2013). Design of Foundations for Large Dynamic Equipment in a High Seismic Region. Structures Congress 2013, 1403–1414. doi:10.1061/9780784412848.124.

Arya, S. C., O'Neill, M. W., & Pincus, G. (1979). Design of structures and foundations for vibrating machines. Gulf Publishing Company, Houston, United States.

Tripathy, S., & Desai, A. K. (2017). Analysis of seismically induced vibrations in turbo machinery foundation for different soil conditions: Case study. Journal of Vibroengineering, 19(6), 4356–4364. doi:10.21595/jve.2017.17436.

Noman, B. J., & Albusoda, B. S. (2023). Seismic Hazard Assessment in Machine Foundation Design: A Review Study. E3S Web of Conferences, 427. doi:10.1051/e3sconf/202342701029.

Noman, B. J., & Albusoda, B. S. (2024). Effect of Soil-Structure Interaction on the Response of Machine Foundation Subjected to Seismic Loading: A Review Study. Journal of Engineering, 30(04), 152–174. doi:10.31026/j.eng.2024.04.10.

Wood, D. M., Crewe, A., & Taylor, C. (2002). Shaking table testing of geotechnical models. International Journal of Physical Modelling in Geotechnics, 2(1), 01–13. doi:10.1680/ijpmg.2002.020101.

Lee, S. H., Choo, Y. W., & Kim, D. S. (2013). Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests. Soil Dynamics and Earthquake Engineering, 44, 102–114. doi:10.1016/j.soildyn.2012.09.008.

Alaie, R., & Jamshidi Chenari, R. (2018). Design and Performance of a Single Axis Shake Table and a Laminar Soil Container. Civil Engineering Journal, 4(6), 1326. doi:10.28991/cej-0309176.

Fiorino, L., Bucciero, B., & Landolfo, R. (2019). Evaluation of seismic dynamic behaviour of drywall partitions, façades and ceilings through shake table testing. Engineering Structures, 180, 103-123. doi:10.1016/j.engstruct.2018.11.028.

Fan, G., Zhang, J., Wu, J., & Yan, K. (2016). Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table. Rock Mechanics and Rock Engineering, 49(8), 3243–3256. doi:10.1007/s00603-016-0971-7.

Hussein, A. F., & El Naggar, M. H. (2021). Seismic axial behaviour of pile groups in non-liquefiable and liquefiable soils. Soil Dynamics and Earthquake Engineering, 149, 106853. doi:10.1016/j.soildyn.2021.106853.

Xiao, C., Han, J., & Zhang, Z. (2016). Experimental study on performance of geosynthetic-reinforced soil model walls on rigid foundations subjected to static footing loading. Geotextiles and Geomembranes, 44(1), 81-94. doi:10.1016/j.geotexmem.2015.06.001.

Garala, T. K., & Madabhushi, G. S. P. (2021). Role of Pile Spacing on Dynamic Behavior of Pile Groups in Layered Soils. Journal of Geotechnical and Geoenvironmental Engineering, 147(3), 4021005. doi:10.1061/(asce)gt.1943-5606.0002483.

Robinsky, E. I., & Morrison, C. F. (1964). Sand Displacement and Compaction around Model Friction Piles. Canadian Geotechnical Journal, 1(2), 81–93. doi:10.1139/t64-002.

Cooke, R. W., & Price, G. (1973). Strains and displacements around friction pile. In: Proc. 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, 2, No.1, 53-60.

Puech, A. (1975). On the influence of compressibility on the limit bearing force of deep foundations. PhD Thesis, Université Grenoble Alpes, Saint-Martin-d'Hères, France. (In French).

Randolph, M. F., & Wroth, C. P. (1978). Analysis of Deformation of Vertically Loaded Piles. Journal of the Geotechnical Engineering Division, 104(12), 1465–1488. doi:10.1061/ajgeb6.0000729.

Dong, J., Chen, F., Zhou, M., & Zhou, X. (2018). Numerical analysis of the boundary effect in model tests for single pile under lateral load. Bulletin of Engineering Geology and the Environment, 77(3), 1057–1068. doi:10.1007/s10064-017-1182-5.

Alves, M., & Oshiro, R. E. (2006). Scaling impacted structures when the prototype and the model are made of different materials. International Journal of Solids and Structures, 43(9), 2744–2760. doi:10.1016/j.ijsolstr.2005.03.003.

Das, B. M., & Sivakugan, N. (2018). Principles of foundation engineering. Cengage Learning, Boston, United States.

ACI 351.3R. (2018). Report on foundations for Dynamic Equipment. American Concrete Institute (ACI), Michigan, United States.

Meymand, P. J. (1998). Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay. Ph.D. Thesis, University of California, Berkeley, Berkeley, United States.

Wood, D. M. (2017). Geotechnical modelling. CRC press, Boca Raton, United States.

Das, B. M., & Luo, Z. (2016). Principles of soil dynamics. Cengage Learning, Boston, United States.

Thomson, W. T. (2018). Theory of Vibration with Applications. CRC Press, Boca Raton, United States. doi:10.1201/9780203718841.

Barkan, D. D., Drashevska, L., & Tschebotarioff, G. P. (1962). Dynamics of Bases and Foundations. McGraw-Hill Book Company, New York, United States.

Richart, F. E., Hall, J. R., & Woods, R. D. (1970). Vibrations of soils and foundations. Prentice Hall, Hoboken, United States.

Bommer, J. J., & Acevedo, A. B. (2004). The use of real earthquake accelerograms as input to dynamic analysis. Journal of Earthquake Engineering, 8(Sup001), 43–91. doi:10.1080/13632460409350521.

Krinitzsky, E. L., & Chang, F. K. (1977). State-of-the-art for assessing earthquake hazards in the United States: Report 7, Specifying peak motions for design earthquakes. Waterways Experiment Station, Vicksburg, United States.

Meteoseism (2024). Iraqi Meteorological Organization and Seismology, Ministry of Transportation, Baghdad, Iraq. Available online: http://meteoseism.gov.iq/ (accessed on September 2024). (In Arabic).

Al-Taie, A. J., & Albusoda, B. S. (2019). Earthquake hazard on Iraqi soil: Halabjah earthquake as a case study. Geodesy and Geodynamics, 10(3), 196–204. doi:10.1016/j.geog.2019.03.004.

CESMD (2024). El Centro 1940 Earthquake Strong Motion Data. Center for Engineering Strong-Motion Data (CESMD), Sacramento and Menlo Park, California, United States. Available online: https://strongmotioncenter.org/ (accessed on September 2024).

USGS. (2024). Pazarcik earthquake, Kahramanmaras earthquake sequence. United States Geological Survey (USGS), Reston, United States. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executive (accessed on September 2024).

CESMD (2024). Kobe 1995 Earthquake Strong Motion Data. Center for Engineering Strong-Motion Data (CESMD), Sacramento and Menlo Park, California, United States. Available online: https://strongmotioncenter.org/ (accessed on September 2024).

Boudghene Stambouli, A., Zendagui, D., Bard, P. Y., & Derras, B. (2017). Deriving amplification factors from simple site parameters using generalized regression neural networks: Implications for relevant site proxies. Earth, Planets and Space, 69(1), 1–26. doi:10.1186/s40623-017-0686-3.

Meng, S. Bo, Zhao, J. Wei, Liu, Z. Xian, & Jin, W. (2022). Prediction and Modeling for Local Site Amplification Effect of Ground Motion: Exploring Optimized Machine Learning Approaches. Pure and Applied Geophysics, 179(5), 1805–1827. doi:10.1007/s00024-022-02997-y.

Zahoor, F., Satyam, N., & Rao, K. S. (2023). A Comprehensive Review of the Nonlinear Response of Soil Deposits and its Implications in Ground Response Analysis. Indian Geotechnical Journal, 54(3), 781–799. doi:10.1007/s40098-023-00798-1.

Hardin, B. O., & Drnevich, V. P. (1972). Shear Modulus and Damping in Soils: Measurement and Parameter Effects (Terzaghi Leture). Journal of the Soil Mechanics and Foundations Division, 98(6), 603–624. doi:10.1061/jsfeaq.0001756.

Seed, H. B. (1970). Soil moduli and damping factors for dynamic response analyses. Report, EERC-70, National Technical Information Service, Springfield, United States

Kaynia, A. M. (1982). Dynamic stiffness and seismic response of pile groups. Ph.D. Thesis, Massachusetts Institute of technology, Cambridge, United States.

Manna, B., & Baidya, D. K. (2010). Dynamic nonlinear response of pile foundations under vertical vibration-Theory versus experiment. Soil Dynamics and Earthquake Engineering, 30(6), 456–469. doi:10.1016/j.soildyn.2010.01.002.

Rao, S. S. (2019). Mechanical vibrations, 1995. Addsion-Wesley, Boston, United States.

Friswell, M. I. (2010). Dynamics of rotating machines. Cambridge university press, Cambridge, United Kingdom.

Thomson, W. (2018). Theory of vibration with applications. CRC Press, Boca Raton, United States.

Crouse, C. B., & Jennings, P. C. (1975). Soil-structure interaction during the San Fernando earthquake. Bulletin of the Seismological Society of America, 65(1), 13–36. doi:10.1785/bssa0650010013.

Wolf, J. P. (1994). Foundation vibration analysis using simple physical models. Pearson Education, London, United Kingdom.

Gazetas, G. (1984). Seismic response of end-bearing single piles. International Journal of Soil Dynamics and Earthquake Engineering, 3(2), 82–93. doi:10.1016/0261-7277(84)90003-2.

Crouse, C. B., & McGuire, J. (2001). Energy dissipation in soil-structure interaction. Earthquake Spectra, 17(2), 235–259. doi:10.1193/1.1586174.

Sugiyama, T., Maeda, K., & Kaneko, M. (1990). Traveling wave effects on a tall and narrow building: Observation and analysis. Computers and Geotechnics, 9(4), 307–324. doi:10.1016/0266-352X(90)90044-V.

Yamahara, H. (1970). Ground motions during earthquakes and the input loss of earthquake power to an excitation of buildings. Soils and Foundations, 10(2), 145–161. doi:10.3208/sandf1960.10.2_145.

Han, Y. C., & W. Sabin, G. C. (1995). Impedances for Radially Inhomogeneous Viscoelastic Soil Media. Journal of Engineering Mechanics, 121(9), 939–947. doi:10.1061/(asce)0733-9399(1995)121:9(939).

Sugiyama, T., Ishii, T., & Kaneko, M. (1995). Effects of seismic wave propagation on a long and narrow building: Body wave and surface wave propagation. Computers and Geotechnics, 17(4), 547–564. doi:10.1016/0266-352X(95)94919-H.

Day, R. W. (2002). Geotechnical Earthquake Engineering. The Civil Engineering Handbook, CRC Press, Boca Raton, United States.

Chopra, A. K. (2007). Dynamics of structures. Pearson Education India, Delhi, India.

Prasad, B. B. (2009). Fundamentals of soil dynamics and earthquake engineering. PHI Learning Private Limited, New Delhi, India.

Sarrazin, M. A., Roesset, J. M., & Whitman, R. V. (1972). Dynamic Soil-Structure Interaction. Journal of the Structural Division, 98(7), 1525–1544. doi:10.1061/jsdeag.0003278.

Yeh, C. H., & Wen, Y. K. (1990). Modeling of nonstationary ground motion and analysis of inelastic structural response. Structural Safety, 8(1–4), 281–298. doi:10.1016/0167-4730(90)90046-R.

Cao, H., Yang, H., Friswell, M. I., & Bai, S. (2004). The Analysis of Earthquake Waves Based on Nonlinear Responses of RC Structures. ESDA2004-58253, 69–74. doi:10.1115/esda2004-58253.

Qu, G., Liu, X., & Yu, R. (2017). Practical Simulation Method of Non-Stationary Earthquake Ground Motion Based on Frequency-Dependent Amplitude Envelope Function. International Collaboration in Lifeline Earthquake Engineering 2016, 23, 405–411. doi:10.1061/9780784480342.055.

Veletsos, A. S., & Meek, J. W. (1974). Dynamic behaviour of buildingâ€foundation systems. Earthquake Engineering & Structural Dynamics, 3(2), 121–138. doi:10.1002/eqe.4290030203.

Mylonakis, G., & Gazetas, G. (2000). Seismic soil-structure interaction: Beneficial or detrimental? Journal of Earthquake Engineering, 4(3), 277–301. doi:10.1080/13632460009350372.

Beresnev, I. A., & Wen, K.-L. (1996). Nonlinear soil response—A reality? Bulletin of the Seismological Society of America, 86(6), 1964–1978. doi:10.1785/bssa0860061964.

Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice Hall, Hoboken, United States.

Inman, D. J. (1989). Vibration: with control, measurement, and stability. Prentice Hall, Hoboken, United States.

Ehrich, F.F. (1992) Handbook of Rotordynamics. McGraw-Hill, New York, United States.

Gutierrez-Wing, E. S. (2003). Modal analysis of rotating machinery structures, Ph.D. Thesis, University of London, London, United Kingdom.

Zheng, X., Jin, Y., Cai, R., Rabczuk, T., Zhu, H., & Zhuang, X. (2024). Elastic surface wave attenuation in layered soil by metastructures. Low-Carbon Materials and Green Construction, 2(1), 5. doi:10.1007/s44242-024-00037-7.


Full Text: PDF

DOI: 10.28991/CEJ-SP2024-010-010

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Bilal J. Noman, Bushra S. Albusoda

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message