The Crack Propagation in Different Rock Types: A Comparative Seismic Simulation

Omer Mughieda, Abdulhai Kaiwaan, Sayed Javid Azimi, Abdoullah Namdar, Yuyi Liu, Marwan Alzaylaie

Abstract


The presence of a preexisting crack in a rock can affect its stability during seismic events, leading to reduced strength and stiffness. This study, which aims to examine how different types of preexisting fracture angles and the mechanical properties of the rock impact real-time cracking propagation modes and crack propagation shape, has practical implications. The researchers used ABAQUS software to apply simulated seismic loading to their model and studied crack propagation using the extended finite element method (XFEM). They found that the crack propagation shape and real-time cracking propagation vary based on the preexisting fracture angles and the mechanical properties of the rock. Additionally, they observed a significant relationship between strain leading to nonlinear deformations and the mechanical properties and fracture seismic toughness mechanism. These findings can be applied to improve the prediction of failure mechanisms in rocks with different crack shapes and could potentially enhance seismic response simulation and geotechnical earthquake engineering codes. The numerical simulation results were validated and compared to existing literature, further highlighting the practical applications of this study's findings.

 

Doi: 10.28991/CEJ-2025-011-01-01

Full Text: PDF


Keywords


Preexisting Fracture; Mechanical Properties; Shearing Strength; Stress; Deformations.

References


Liu, L., Li, H., & Li, X. (2022). A state-of-the-art review of mechanical characteristics and cracking processes of pre-cracked rocks under quasi-static compression. Journal of Rock Mechanics and Geotechnical Engineering, 14(6), 2034–2057. doi:10.1016/j.jrmge.2022.03.013.

Mughieda, O., & Karasneh, I. (2006). Coalescence of offset rock joints under biaxial loading. Geotechnical and Geological Engineering, 24(4), 985–999. doi:10.1007/s10706-005-8352-0.

Modiriasari, A., Bobet, A., & Pyrak-Nolte, L. J. (2017). Active Seismic Monitoring of Crack Initiation, Propagation, and Coalescence in Rock. Rock Mechanics and Rock Engineering, 50(9), 2311–2325. doi:10.1007/s00603-017-1235-x.

Namdar, A., Darvishi, E., Feng, X., Zakaria, I., & Mat Yahaya, F. (2016). Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation. Frattura Ed Integrita Strutturale, 10(36), 168–181. doi:10.3221/IGF-ESIS.36.17.

Mughieda, O., Namdar, A., & Nie, W. (2024). The use of polyurethane foam-sand mixtures in sandy embankment design- predicting seismic response using FEM, catastrophe theory, B-spline method, and artificial neural networks. Heliyon, 10(11), 31719. doi:10.1016/j.heliyon.2024.e31719.

Mughieda, O., Guo, L., Tang, Y., Okasha, N. M., Azimi, S. J., Namdar, A., & Azhar, F. (2024). The displacement mechanism of the cracked rock – a seismic design and prediction study using XFEM and ANNs. Advanced Modeling and Simulation in Engineering Sciences, 11(1), 4. doi:10.1186/s40323-024-00261-7.

Zhou, X. P., Zhang, J. Z., Yang, S. Q., & Berto, F. (2021). Compression-induced crack initiation and growth in flawed rocks: A review. Fatigue and Fracture of Engineering Materials and Structures, 44(7), 1681–1707. doi:10.1111/ffe.13477.

Feng, W., Chen, Z., Tang, Y., Liu, F., Yang, F., Yang, Y., Tayeh, B. A., & Namdar, A. (2022). Fracture characteristics of sustainable crumb rubber concrete under a wide range of loading rates. Construction and Building Materials, 359, 129474. doi:10.1016/j.conbuildmat.2022.129474.

Niu, Y., Zhou, X. P., & Berto, F. (2020). Evaluation of fracture mode classification in flawed red sandstone under uniaxial compression. Theoretical and Applied Fracture Mechanics, 107, 102528. doi:10.1016/j.tafmec.2020.102528.

Elfergani, H. A., Pullin, R., & Holford, K. M. (2013). Damage assessment of corrosion in prestressed concrete by acoustic emission. Construction and Building Materials, 40, 925–933. doi:10.1016/j.conbuildmat.2012.11.071.

Namdar, A., Zakaria, I. Bin, Hazeli, A. B., Azimi, S. J., Razak, A. S. B. A., & Gopalakrishna, G. S. (2013). An experimental study on flexural strength enhancement of concrete by means of small steel fibers. Frattura ed Integrita Strutturale, 26, 22–30. doi:10.3221/IGF-ESIS.26.03.

Berto, F., & Lazzarin, P. (2009). A review of the volume-based strain energy density approach applied to V-notches and welded structures. Theoretical and Applied Fracture Mechanics, 52(3), 183–194. doi:10.1016/j.tafmec.2009.10.001.

Berto, F., & Lazzarin, P. (2014). Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Materials Science and Engineering R: Reports, 75(1), 1–48. doi:10.1016/j.mser.2013.11.001.

Zhou, X. P., Cheng, H., & Feng, Y. F. (2014). An Experimental Study of Crack Coalescence Behaviour in Rock-Like Materials Containing Multiple Flaws Under Uniaxial Compression. Rock Mechanics and Rock Engineering, 47(6), 1961–1986. doi:10.1007/s00603-013-0511-7.

Zhou, X. P., Lian, Y. J., Wong, L. N. Y., & Berto, F. (2018). Understanding the fracture behavior of brittle and ductile multi-flawed rocks by uniaxial loading by digital image correlation. Engineering Fracture Mechanics, 199(2018,), 438–460. doi:10.1016/j.engfracmech.2018.06.007.

Zhang, J., Zhou, X., Zhou, L., & Berto, F. (2019). Progressive failure of brittle rocks with non-isometric flaws: Insights from acousto-optic-mechanical (AOM) data. Fatigue & Fracture of Engineering Materials & Structures, 42(8), 1787-1802. Portico. doi:10.1111/ffe.13019.

Zhou, X. P., Chen, J. W., & Berto, F. (2020). XFEM based node scheme for the frictional contact crack problem. Computers and Structures, 231, 106221. doi:10.1016/j.compstruc.2020.106221.

Tang, Y., Lin, H., Cao, R., Sun, S., & Zha, W. (2023). Role of Rock Sections in Intermittent Joints in Controlling Rock Mass Strength and Failure Modes. Rock Mechanics and Rock Engineering, 56(7), 5203–5221. doi:10.1007/s00603-023-03320-4.

Cao, R. hong, Cao, P., Fan, X., Xiong, X., & Lin, H. (2016). An Experimental and Numerical Study on Mechanical Behavior of Ubiquitous-Joint Brittle Rock-Like Specimens Under Uniaxial Compression. Rock Mechanics and Rock Engineering, 49(11), 4319–4338. doi:10.1007/s00603-016-1029-6.

Chen, Y., Tang, Y., Cao, R., Sun, S., Zha, W., & Lin, H. (2023). Failure mode of parallel-fractured rock-like sample with different inclinations. Theoretical and Applied Fracture Mechanics, 127, 104053. doi:10.1016/j.tafmec.2023.104053.

Xie, S., Lin, H., & Duan, H. (2023). A novel criterion for yield shear displacement of rock discontinuities based on renormalization group theory. Engineering Geology, 314(5), 107008. doi:10.1016/j.enggeo.2023.107008.

Xie, S., Han, Z., Hu, H., & Lin, H. (2022). Application of a novel constitutive model to evaluate the shear deformation of discontinuity. Engineering Geology, 304, 106693. doi:10.1016/j.enggeo.2022.106693.

Namdar, A. (2021). The boundary condition simulation quality for embankment seismic response. Engineering Failure Analysis, 126, 105491. doi:10.1016/j.engfailanal.2021.105491.

Namdar, A. (2020). Forecasting the bearing capacity of the mixed soil using artificial neural network. Frattura ed Integrita Strutturale, 14(53), 285–294. doi:10.3221/IGF-ESIS.23.22.

Omar, M., Shanableh, A., Mughieda, O., Arab, M., Zeiada, W., & Al-Ruzouq, R. (2018). Advanced mathematical models and their comparison to predict compaction properties of fine-grained soils from various physical properties. Soils and Foundations, 58(6), 1383–1399. doi:10.1016/j.sandf.2018.08.004.

Namdar, A. (2021). The application of soil mixture in concrete footing design using the linear regression model. Material Design and Processing Communications, 3(5), 179. doi:10.1002/mdp2.179.

Mughieda, O. S., Bani-Hani, K., & Abu Safieh, B. F. (2009). Liquefaction assessment by artificial neural networks based on CPT. International Journal of Geotechnical Engineering, 3(2), 289–302. doi:10.3328/IJGE.2009.03.02.289-302.

Li, H., Wang, F., Chen, F., Deng, J., & Zhao, S. (2023). Comparison of high-frequency components in acoustic emissions from rock fracture under Mode I and Mode II dominated loading. International Journal of Rock Mechanics and Mining Sciences, 170, 105554. doi:10.1016/j.ijrmms.2023.105554.

Li, Y., Cai, W., Zhu, W., Dong, Z., & Zhang, Q. (2019). Particle flow analysis of parallel double crack evolution under uniaxial compression. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 50(12), 3035–3045. doi:10.11817/j.issn.1672-7207.2019.12.013.

Yu, L., & Liu, J. (2015). Stability of interbed for salt cavern gas storage in solution mining considering cusp displacement catastrophe theory. Petroleum, 1(1), 82–90. doi:10.1016/j.petlm.2015.03.006.

CESMD (2024). Center for Engineering Strong Motion Data (CESMD), Sacramento, United States. Available online: https://strongmotioncenter.org/ (accessed on December 2024).

Tidke, A. R., & Adhikary, S. (2021). Seismic fragility analysis of the Koyna gravity dam with layered rock foundation considering tensile crack failure. Engineering Failure Analysis, 125, 105361. doi:10.1016/j.engfailanal.2021.105361.

Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite Dynamic Model for Infinite Media. Journal of the Engineering Mechanics Division, 95(4), 859–877. doi:10.1061/jmcea3.0001144.

Hosseini-Toudeshky, H., & Jamalian, M. (2015). Simulation of micromechanical damage to obtain mechanical properties of bimodal Al using XFEM. Mechanics of Materials, 89, 229–240. doi:10.1016/j.mechmat.2015.06.015.

Johanns, K. E., Lee, J. H., Gao, Y. F., & Pharr, G. M. (2014). An evaluation of the advantages and limitations in simulating indentation cracking with cohesive zone finite elements. Modelling and Simulation in Materials Science and Engineering, 22(1), 15011. doi:10.1088/0965-0393/22/1/015011.

Agatonovic-Kustrin, S., & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis, 22(5), 717–727. doi:10.1016/S0731-7085(99)00272-1.

Shahin, M. A., Jaksa, M. B., & Maier, H. R. (2009). Recent Advances and Future Challenges for Artificial Neural Systems in Geotechnical Engineering Applications. Advances in Artificial Neural Systems, 2009(1), 308239. doi:10.1155/2009/308239.

Zhang, J., Ai, C., Li, Y. wei, Che, M. guang, Gao, R., & Zeng, J. (2018). Energy-Based Brittleness Index and Acoustic Emission Characteristics of Anisotropic Coal Under Triaxial Stress Condition. Rock Mechanics and Rock Engineering, 51(11), 3343–3360. doi:10.1007/s00603-018-1535-9.

Li, Y., Long, M., Zuo, L., Li, W., & Zhao, W. (2019). Brittleness evaluation of coal based on statistical damage and energy evolution theory. Journal of Petroleum Science and Engineering, 172, 753–763. doi:10.1016/j.petrol.2018.08.069.

Jaeger, J. C., Cook, N. G. W., & Zimmerman, R. W. (2007). Fundamentals of rock mechanics (4th Ed.). John Wiley & Sons, Hoboken, United States.

Zheng, Z., Li, R., Zhang, Q., Huang, X., Wang, W., & Huang, S. (2024). Mechanical parameter evolutions and deterioration constitutive model for ductile–brittle failure of surrounding rock in high-stress underground engineering. Underground Space (China), 15, 131–152. doi:10.1016/j.undsp.2023.07.004.

Liu, D., Li, M., Zuo, J., Gao, Y., Zhong, F., Zhang, Y., & Chang, Y. (2021). Experimental and numerical investigation on cracking mechanism of tunnel lining under bias pressure. Thin-Walled Structures, 163, 107693. doi:10.1016/j.tws.2021.107693.

Zhang, X., Zhang, Q., Liu, Q., & Xiao, R. (2022). A Numerical Study of Wave Propagation and Cracking Processes in Rock-Like Material under Seismic Loading Based on the Bonded-Particle Model Approach. Engineering, 17, 140–150. doi:10.1016/j.eng.2021.09.023.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-01-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Omer Mughieda, Abdulhai Kaiwaan, Sayed Javid Azimi, Abdoullah Namdar, Yuyi Liu, Marwan Alzaylaie

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message