The Crack Propagation in Different Rock Types: A Comparative Seismic Simulation
Abstract
Doi: 10.28991/CEJ-2025-011-01-01
Full Text: PDF
Keywords
References
Liu, L., Li, H., & Li, X. (2022). A state-of-the-art review of mechanical characteristics and cracking processes of pre-cracked rocks under quasi-static compression. Journal of Rock Mechanics and Geotechnical Engineering, 14(6), 2034–2057. doi:10.1016/j.jrmge.2022.03.013.
Mughieda, O., & Karasneh, I. (2006). Coalescence of offset rock joints under biaxial loading. Geotechnical and Geological Engineering, 24(4), 985–999. doi:10.1007/s10706-005-8352-0.
Modiriasari, A., Bobet, A., & Pyrak-Nolte, L. J. (2017). Active Seismic Monitoring of Crack Initiation, Propagation, and Coalescence in Rock. Rock Mechanics and Rock Engineering, 50(9), 2311–2325. doi:10.1007/s00603-017-1235-x.
Namdar, A., Darvishi, E., Feng, X., Zakaria, I., & Mat Yahaya, F. (2016). Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation. Frattura Ed Integrita Strutturale, 10(36), 168–181. doi:10.3221/IGF-ESIS.36.17.
Mughieda, O., Namdar, A., & Nie, W. (2024). The use of polyurethane foam-sand mixtures in sandy embankment design- predicting seismic response using FEM, catastrophe theory, B-spline method, and artificial neural networks. Heliyon, 10(11), 31719. doi:10.1016/j.heliyon.2024.e31719.
Mughieda, O., Guo, L., Tang, Y., Okasha, N. M., Azimi, S. J., Namdar, A., & Azhar, F. (2024). The displacement mechanism of the cracked rock – a seismic design and prediction study using XFEM and ANNs. Advanced Modeling and Simulation in Engineering Sciences, 11(1), 4. doi:10.1186/s40323-024-00261-7.
Zhou, X. P., Zhang, J. Z., Yang, S. Q., & Berto, F. (2021). Compression-induced crack initiation and growth in flawed rocks: A review. Fatigue and Fracture of Engineering Materials and Structures, 44(7), 1681–1707. doi:10.1111/ffe.13477.
Feng, W., Chen, Z., Tang, Y., Liu, F., Yang, F., Yang, Y., Tayeh, B. A., & Namdar, A. (2022). Fracture characteristics of sustainable crumb rubber concrete under a wide range of loading rates. Construction and Building Materials, 359, 129474. doi:10.1016/j.conbuildmat.2022.129474.
Niu, Y., Zhou, X. P., & Berto, F. (2020). Evaluation of fracture mode classification in flawed red sandstone under uniaxial compression. Theoretical and Applied Fracture Mechanics, 107, 102528. doi:10.1016/j.tafmec.2020.102528.
Elfergani, H. A., Pullin, R., & Holford, K. M. (2013). Damage assessment of corrosion in prestressed concrete by acoustic emission. Construction and Building Materials, 40, 925–933. doi:10.1016/j.conbuildmat.2012.11.071.
Namdar, A., Zakaria, I. Bin, Hazeli, A. B., Azimi, S. J., Razak, A. S. B. A., & Gopalakrishna, G. S. (2013). An experimental study on flexural strength enhancement of concrete by means of small steel fibers. Frattura ed Integrita Strutturale, 26, 22–30. doi:10.3221/IGF-ESIS.26.03.
Berto, F., & Lazzarin, P. (2009). A review of the volume-based strain energy density approach applied to V-notches and welded structures. Theoretical and Applied Fracture Mechanics, 52(3), 183–194. doi:10.1016/j.tafmec.2009.10.001.
Berto, F., & Lazzarin, P. (2014). Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Materials Science and Engineering R: Reports, 75(1), 1–48. doi:10.1016/j.mser.2013.11.001.
Zhou, X. P., Cheng, H., & Feng, Y. F. (2014). An Experimental Study of Crack Coalescence Behaviour in Rock-Like Materials Containing Multiple Flaws Under Uniaxial Compression. Rock Mechanics and Rock Engineering, 47(6), 1961–1986. doi:10.1007/s00603-013-0511-7.
Zhou, X. P., Lian, Y. J., Wong, L. N. Y., & Berto, F. (2018). Understanding the fracture behavior of brittle and ductile multi-flawed rocks by uniaxial loading by digital image correlation. Engineering Fracture Mechanics, 199(2018,), 438–460. doi:10.1016/j.engfracmech.2018.06.007.
Zhang, J., Zhou, X., Zhou, L., & Berto, F. (2019). Progressive failure of brittle rocks with non-isometric flaws: Insights from acousto-optic-mechanical (AOM) data. Fatigue & Fracture of Engineering Materials & Structures, 42(8), 1787-1802. Portico. doi:10.1111/ffe.13019.
Zhou, X. P., Chen, J. W., & Berto, F. (2020). XFEM based node scheme for the frictional contact crack problem. Computers and Structures, 231, 106221. doi:10.1016/j.compstruc.2020.106221.
Tang, Y., Lin, H., Cao, R., Sun, S., & Zha, W. (2023). Role of Rock Sections in Intermittent Joints in Controlling Rock Mass Strength and Failure Modes. Rock Mechanics and Rock Engineering, 56(7), 5203–5221. doi:10.1007/s00603-023-03320-4.
Cao, R. hong, Cao, P., Fan, X., Xiong, X., & Lin, H. (2016). An Experimental and Numerical Study on Mechanical Behavior of Ubiquitous-Joint Brittle Rock-Like Specimens Under Uniaxial Compression. Rock Mechanics and Rock Engineering, 49(11), 4319–4338. doi:10.1007/s00603-016-1029-6.
Chen, Y., Tang, Y., Cao, R., Sun, S., Zha, W., & Lin, H. (2023). Failure mode of parallel-fractured rock-like sample with different inclinations. Theoretical and Applied Fracture Mechanics, 127, 104053. doi:10.1016/j.tafmec.2023.104053.
Xie, S., Lin, H., & Duan, H. (2023). A novel criterion for yield shear displacement of rock discontinuities based on renormalization group theory. Engineering Geology, 314(5), 107008. doi:10.1016/j.enggeo.2023.107008.
Xie, S., Han, Z., Hu, H., & Lin, H. (2022). Application of a novel constitutive model to evaluate the shear deformation of discontinuity. Engineering Geology, 304, 106693. doi:10.1016/j.enggeo.2022.106693.
Namdar, A. (2021). The boundary condition simulation quality for embankment seismic response. Engineering Failure Analysis, 126, 105491. doi:10.1016/j.engfailanal.2021.105491.
Namdar, A. (2020). Forecasting the bearing capacity of the mixed soil using artificial neural network. Frattura ed Integrita Strutturale, 14(53), 285–294. doi:10.3221/IGF-ESIS.23.22.
Omar, M., Shanableh, A., Mughieda, O., Arab, M., Zeiada, W., & Al-Ruzouq, R. (2018). Advanced mathematical models and their comparison to predict compaction properties of fine-grained soils from various physical properties. Soils and Foundations, 58(6), 1383–1399. doi:10.1016/j.sandf.2018.08.004.
Namdar, A. (2021). The application of soil mixture in concrete footing design using the linear regression model. Material Design and Processing Communications, 3(5), 179. doi:10.1002/mdp2.179.
Mughieda, O. S., Bani-Hani, K., & Abu Safieh, B. F. (2009). Liquefaction assessment by artificial neural networks based on CPT. International Journal of Geotechnical Engineering, 3(2), 289–302. doi:10.3328/IJGE.2009.03.02.289-302.
Li, H., Wang, F., Chen, F., Deng, J., & Zhao, S. (2023). Comparison of high-frequency components in acoustic emissions from rock fracture under Mode I and Mode II dominated loading. International Journal of Rock Mechanics and Mining Sciences, 170, 105554. doi:10.1016/j.ijrmms.2023.105554.
Li, Y., Cai, W., Zhu, W., Dong, Z., & Zhang, Q. (2019). Particle flow analysis of parallel double crack evolution under uniaxial compression. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 50(12), 3035–3045. doi:10.11817/j.issn.1672-7207.2019.12.013.
Yu, L., & Liu, J. (2015). Stability of interbed for salt cavern gas storage in solution mining considering cusp displacement catastrophe theory. Petroleum, 1(1), 82–90. doi:10.1016/j.petlm.2015.03.006.
CESMD (2024). Center for Engineering Strong Motion Data (CESMD), Sacramento, United States. Available online: https://strongmotioncenter.org/ (accessed on December 2024).
Tidke, A. R., & Adhikary, S. (2021). Seismic fragility analysis of the Koyna gravity dam with layered rock foundation considering tensile crack failure. Engineering Failure Analysis, 125, 105361. doi:10.1016/j.engfailanal.2021.105361.
Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite Dynamic Model for Infinite Media. Journal of the Engineering Mechanics Division, 95(4), 859–877. doi:10.1061/jmcea3.0001144.
Hosseini-Toudeshky, H., & Jamalian, M. (2015). Simulation of micromechanical damage to obtain mechanical properties of bimodal Al using XFEM. Mechanics of Materials, 89, 229–240. doi:10.1016/j.mechmat.2015.06.015.
Johanns, K. E., Lee, J. H., Gao, Y. F., & Pharr, G. M. (2014). An evaluation of the advantages and limitations in simulating indentation cracking with cohesive zone finite elements. Modelling and Simulation in Materials Science and Engineering, 22(1), 15011. doi:10.1088/0965-0393/22/1/015011.
Agatonovic-Kustrin, S., & Beresford, R. (2000). Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis, 22(5), 717–727. doi:10.1016/S0731-7085(99)00272-1.
Shahin, M. A., Jaksa, M. B., & Maier, H. R. (2009). Recent Advances and Future Challenges for Artificial Neural Systems in Geotechnical Engineering Applications. Advances in Artificial Neural Systems, 2009(1), 308239. doi:10.1155/2009/308239.
Zhang, J., Ai, C., Li, Y. wei, Che, M. guang, Gao, R., & Zeng, J. (2018). Energy-Based Brittleness Index and Acoustic Emission Characteristics of Anisotropic Coal Under Triaxial Stress Condition. Rock Mechanics and Rock Engineering, 51(11), 3343–3360. doi:10.1007/s00603-018-1535-9.
Li, Y., Long, M., Zuo, L., Li, W., & Zhao, W. (2019). Brittleness evaluation of coal based on statistical damage and energy evolution theory. Journal of Petroleum Science and Engineering, 172, 753–763. doi:10.1016/j.petrol.2018.08.069.
Jaeger, J. C., Cook, N. G. W., & Zimmerman, R. W. (2007). Fundamentals of rock mechanics (4th Ed.). John Wiley & Sons, Hoboken, United States.
Zheng, Z., Li, R., Zhang, Q., Huang, X., Wang, W., & Huang, S. (2024). Mechanical parameter evolutions and deterioration constitutive model for ductile–brittle failure of surrounding rock in high-stress underground engineering. Underground Space (China), 15, 131–152. doi:10.1016/j.undsp.2023.07.004.
Liu, D., Li, M., Zuo, J., Gao, Y., Zhong, F., Zhang, Y., & Chang, Y. (2021). Experimental and numerical investigation on cracking mechanism of tunnel lining under bias pressure. Thin-Walled Structures, 163, 107693. doi:10.1016/j.tws.2021.107693.
Zhang, X., Zhang, Q., Liu, Q., & Xiao, R. (2022). A Numerical Study of Wave Propagation and Cracking Processes in Rock-Like Material under Seismic Loading Based on the Bonded-Particle Model Approach. Engineering, 17, 140–150. doi:10.1016/j.eng.2021.09.023.
DOI: 10.28991/CEJ-2025-011-01-01
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Omer Mughieda, Abdulhai Kaiwaan, Sayed Javid Azimi, Abdoullah Namdar, Yuyi Liu, Marwan Alzaylaie

This work is licensed under a Creative Commons Attribution 4.0 International License.