Development of Pavement Deterioration Models Using Markov Chain Process
Abstract
Doi: 10.28991/CEJ-2024-010-09-012
Full Text: PDF
Keywords
References
Rifai, A. I., Pereira, P., Hadiwardoyo, S. P., Correia, A. G., & Cortez, P. (2015). Implementation of Data Mining to Support Road Pavement Management System in Indonesia. HPJI Journal (Indonesian Road Development Association), 1(2), 93–104. doi:10.26593/.v1i2.1473.
Pais, J. C., Amorim, S. I. R., & Minhoto, M. J. C. (2013). Impact of traffic overload on road pavement performance. Journal of Transportation Engineering, 139(9), 873–879. doi:10.1061/(ASCE)TE.1943-5436.0000571.
Hadiwardoyo, S. P., Sumabrata, R. J., & Berawi, M. A. (2012). Tolerance Limit for Trucks with Excess Load in Transport Regulation in Indonesia. MAKARA of Technology Series, 16(1), 85–92. doi:10.7454/mst.v16i1.1336.
Angreni, I. A. A., Adisasmita, S. A., Isran Ramli, M., & Hamid, S. (2018). Evaluating the road damage of flexible pavement using digital image. International Journal of Integrated Engineering, 10(2), 24–27. doi:10.30880/ijie.2018.10.02.005.
Hadiwardoyo, S. P. D. (2018). Roads and Transportation Infrastructure Development Models. Quadrant, Bandung, Indonesia.
Widyaningsih, N. S. H., Wan Mohtar, W. H. M., & Muhammad, I. R. (2024). Determination of Oriented Transit Development at Light Rail Transit Stations by the Process Hierarchy Analysis. International Journal on Technical and Physical Problems of Engineering, 16(58), 144–148.
Ruiz, A., & Guevara, J. (2020). Sustainable decision-making in road development: Analysis of road preservation policies. Sustainability (Switzerland), 12(3), 872. doi:10.3390/su12030872.
Jurkevičius, M., Puodžiukas, V., & Laurinavičius, A. (2020). Implementation of road performance calculation models used in strategic planning systems for Lithuania conditions. Baltic Journal of Road and Bridge Engineering, 15(3), 146–156. doi:10.7250/bjrbe.2020-15.489.
Hankach, P., Lorino, T., & Gastineau, P. (2019). A constraint-based, efficiency optimisation approach to network-level pavement maintenance management. Structure and Infrastructure Engineering, 15(11), 1450–1467. doi:10.1080/15732479.2019.1624787.
Santos, J., & Ferreira, A. (2012). Pavement design optimization considering costs and preventive interventions. Journal of Transportation Engineering, 138(7), 911–923. doi:10.1061/(ASCE)TE.1943-5436.0000390.
Talib, I., Nassrullah, Z., & Abduljaleel, L. (2023). A Case Study on Reducing Traffic Congestion–Proposals to Improve Current Conditions. Civil Engineering Journal (Iran), 9(10), 2456–2466. doi:10.28991/CEJ-2023-09-10-07.
Fani, A., Golroo, A., Ali Mirhassani, S., & Gandomi, A. H. (2022). Pavement maintenance and rehabilitation planning optimisation under budget and pavement deterioration uncertainty. International Journal of Pavement Engineering, 23(2), 414–424. doi:10.1080/10298436.2020.1748628.
Isradi, M., Prasetijo, J., Aden, T. S., & Rifai, A. I. (2023). Relationship of present serviceability index for flexible and rigid pavement in urban road damage assessment using pavement condition index and international roughness index. E3S Web of Conferences, 429. doi:10.1051/e3sconf/202342903012.
Yang, J., Lu, J. J., Gunaratne, M., & Dietrich, B. (2006). Modeling crack deterioration of flexible pavements: Comparison of recurrent Markov chains and artificial neural networks. Transportation Research Record, 1974, 18–25. doi:10.3141/1974-05.
Moreira, A. V., Tinoco, J., Oliveira, J. R. M., & Santos, A. (2018). An application of Markov chains to predict the evolution of performance indicators based on pavement historical data. International Journal of Pavement Engineering, 19(10), 937–948. doi:10.1080/10298436.2016.1224412.
Gao, H., & Zhang, X. (2013). A markov-based road maintenance optimization model considering user costs. Computer-Aided Civil and Infrastructure Engineering, 28(6), 451–464. doi:10.1111/mice.12009.
Abaza, K. A. (2023). Simplified Markovian-based pavement management model for sustainable long-term rehabilitation planning. Road Materials and Pavement Design, 24(3), 850–865. doi:10.1080/14680629.2022.2048055.
Salman, B., & Gursoy, B. (2022). Markov chain pavement deterioration prediction models for local street networks. Built Environment Project and Asset Management, 12(6), 853–870. doi:10.1108/BEPAM-09-2021-0117.
Isradi, M., Prasetijo, J., Rifai, A. I., Andraiko, H., & Zhang, G. (2024). The Prediction of Road Condition Value during Maintenance Based on Markov Process. International Journal on Advanced Science, Engineering and Information Technology, 14(3), 1083–1090. doi:10.18517/ijaseit.14.3.19475.
Abaza, K. A. (2017). Empirical Markovian-based models for rehabilitated pavement performance used in a life cycle analysis approach. Structure and Infrastructure Engineering, 13(5), 625–636. doi:10.1080/15732479.2016.1187180.
Pérez-Acebo, H., Linares-Unamunzaga, A., Rojí, E., & Gonzalo-Orden, H. (2020). IRI performance models for flexible pavements in two-lane roads until first maintenance and/or rehabilitation work. Coatings, 10(2), 97. doi:10.3390/coatings10020097.
Isradi, M., Prasetijo, J., Prasetyo, Y. D., Hartatik, N., & Rifai, A. I. (2023). Prediction of Service Life Base on Relationship Between Psi and Iri for Flexible Pavement. Proceedings on Engineering Sciences, 5(2), 267–274. doi:10.24874/PES05.02.009.
[23] Siahaan, D. A., & Surbakti, M. S. (2014). Comparative Analysis of IRI Values Based on NAASRA Reading Range Variations. Proceeding The 17th FSTPT International Symposium; 22 - 24 August, 22–24.
Kinasih, R. K., Prasetijo, J., Indriany, S., Isradi, M., & Biantoro, A. W. (2022). Analyzing Toll Road as a Solution to The Existing Highway Problem. Res Militaris, 12(6), 435–445.
Chen, W., Zheng, M., Tian, N., Ding, X., Li, N., & Zhang, W. (2023). Project-based sustainable timing series decision-making for pavement maintenance using multi-objective optimization: An innovation in traditional solutions. Journal of Cleaner Production, 407, 137172. doi:10.1016/j.jclepro.2023.137172.
Duc, N. T. T., Tai, P. D., & Buddhakulsomsiri, J. (2022). A Markovian approach to modeling a periodic order-up-to-level policy under stochastic discrete demand and lead time with lost sales. International Transactions in Operational Research, 29(2), 1132–1158. doi:10.1111/itor.13042.
Sazali, A., Setiadji, B. H., & Haryadi, B. (2021). Prediction of Road Handling Cost Using Markov Chain Method in Regency Road Network. International Journal of Integrated Engineering, 13(4), 275–283. doi:10.30880/ijie.2021.13.04.026.
de Oliveira, J. L. M., Davis, G., Khani, A., & Marasteanu, M. (2022). Heterogeneous Markov Chain Model to Predict Pavement Performance and Deterioration. Transportation Research Record, 2676(9), 568–581. doi:10.1177/03611981221088222.
Sati, A. S., Abu Dabous, S., & Zeiada, W. (2020). Pavement Deterioration Model Using Markov Chain and International Roughness Index. IOP Conference Series: Materials Science and Engineering, 812(1). doi:10.1088/1757-899X/812/1/012012.
Saha, P., Ksaibati, K., & Atadero, R. (2017). Developing Pavement Distress Deterioration Models for Pavement Management System Using Markovian Probabilistic Process. Advances in Civil Engineering, 2017, 1–9. doi:10.1155/2017/8292056.
Mills, J. A., & Parent, O. (2021). Bayesian Markov Chain Monte Carlo Estimation. In Handbook of Regional Science: Second and Extended Edition: With 238 Figures and 78 Tables, 2073–2096. doi:10.1007/978-3-662-60723-7_89.
Surendrakumar, K., Prashant, N., & Mayuresh, P. (2013). Application of Markovian Probabilistic Process to Develop A Decision Support System for Pavement Maintenance Management. International Journal of Scientific & Technology Research, 2(8), 295–303.
Schorner, P., Tottel, L., Doll, J., & Zollner, J. M. (2019). Predictive trajectory planning in situations with hidden road users using partially observable markov decision processes. IEEE Intelligent Vehicles Symposium, Proceedings, 2019-June(Iv), 2299–2306. doi:10.1109/IVS.2019.8814022.
Abaza, K. A. (2021). Empirical-Markovian approach for estimating the flexible pavement structural capacity: Caltrans method as a case study. International Journal of Transportation Science and Technology, 10(2), 156–166. doi:10.1016/j.ijtst.2020.12.007.
Wang, Z., Guo, N., Wang, S., & Xu, Y. (2021). Prediction of highway asphalt pavement performance based on Markov chain and artificial neural network approach. Journal of Supercomputing, 77(2), 1354–1376. doi:10.1007/s11227-020-03329-4.
Wei, B., Guo, C., & Deng, M. (2022). An Innovation of the Markov Probability Model for Predicting the Remaining Service Life of Civil Airport Rigid Pavements. Materials, 15(17), 6082. doi:10.3390/ma15176082.
Vallès-Vallès, D., & Torres-Machi, C. (2023). Deterioration of Flexible Pavements Induced by Flooding: Case Study Using Stochastic Monte Carlo Simulations in Discrete-Time Markov Chains. Journal of Infrastructure Systems, 29(1), 05022009. doi:10.1061/jitse4.iseng-2109.
Elsaid, F., Amador-Jimenez, L., & Mazaheri, A. (2023). Estimating Layers’ Structural Coefficients for Flexible Pavements in Costa Rica Road’s Network Using Full Bayesian Markov Chain Monte Carlo Approach. International Journal of Pavement Research and Technology, 16(3), 731–744. doi:10.1007/s42947-022-00160-3.
DOI: 10.28991/CEJ-2024-010-09-012
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muhammad Isradi, Joewono Prasetijo, Andri Irfan Rifai, Reni Karno Kinasih

This work is licensed under a Creative Commons Attribution 4.0 International License.