Development of Pavement Deterioration Models Using Markov Chain Process

Muhammad Isradi, Andri I. Rifai, Joewono Prasetijo, Reni K. Kinasih, Muhammad I. Setiawan

Abstract


A common phenomenon in developing countries is that the function of the pavement in the road network will experience structural damage before the completion of life is reached, and the uncertainty of pavement damage is difficult to predict. Planning for maintenance treatment depends on the accuracy of predicting future pavement performance and observing current conditions. This study aims to apply the Markovian probability operational research process to develop a decision support system predicting future pavement conditions. Furthermore, it determines policies and effectiveness in managing and maintaining roads. A standard approach that can be used by observing the history of pavement damage from year to year is to estimate the transition probability as a Markovian-based performance prediction model. The results show that the application of the model is quite optimal, changes in pavement conditions after repair can be easily compared with an increase in good condition, reaching 92.8%. Routinely and consistently handling road deterioration will give favorable results regarding pavement condition value. This will ease in the management of the road network and the accomplishment of the optimal maintenance and repair policies.

 

Doi: 10.28991/CEJ-2024-010-09-012

Full Text: PDF


Keywords


Markov Chain; Probabilistic Process; Pavement Management; Road Maintenance.

References


Rifai, A. I., Pereira, P., Hadiwardoyo, S. P., Correia, A. G., & Cortez, P. (2015). Implementation of Data Mining to Support Road Pavement Management System in Indonesia. HPJI Journal (Indonesian Road Development Association), 1(2), 93–104. doi:10.26593/.v1i2.1473.

Pais, J. C., Amorim, S. I. R., & Minhoto, M. J. C. (2013). Impact of traffic overload on road pavement performance. Journal of Transportation Engineering, 139(9), 873–879. doi:10.1061/(ASCE)TE.1943-5436.0000571.

Hadiwardoyo, S. P., Sumabrata, R. J., & Berawi, M. A. (2012). Tolerance Limit for Trucks with Excess Load in Transport Regulation in Indonesia. MAKARA of Technology Series, 16(1), 85–92. doi:10.7454/mst.v16i1.1336.

Angreni, I. A. A., Adisasmita, S. A., Isran Ramli, M., & Hamid, S. (2018). Evaluating the road damage of flexible pavement using digital image. International Journal of Integrated Engineering, 10(2), 24–27. doi:10.30880/ijie.2018.10.02.005.

Hadiwardoyo, S. P. D. (2018). Roads and Transportation Infrastructure Development Models. Quadrant, Bandung, Indonesia.

Widyaningsih, N. S. H., Wan Mohtar, W. H. M., & Muhammad, I. R. (2024). Determination of Oriented Transit Development at Light Rail Transit Stations by the Process Hierarchy Analysis. International Journal on Technical and Physical Problems of Engineering, 16(58), 144–148.

Ruiz, A., & Guevara, J. (2020). Sustainable decision-making in road development: Analysis of road preservation policies. Sustainability (Switzerland), 12(3), 872. doi:10.3390/su12030872.

Jurkevičius, M., Puodžiukas, V., & Laurinavičius, A. (2020). Implementation of road performance calculation models used in strategic planning systems for Lithuania conditions. Baltic Journal of Road and Bridge Engineering, 15(3), 146–156. doi:10.7250/bjrbe.2020-15.489.

Hankach, P., Lorino, T., & Gastineau, P. (2019). A constraint-based, efficiency optimisation approach to network-level pavement maintenance management. Structure and Infrastructure Engineering, 15(11), 1450–1467. doi:10.1080/15732479.2019.1624787.

Santos, J., & Ferreira, A. (2012). Pavement design optimization considering costs and preventive interventions. Journal of Transportation Engineering, 138(7), 911–923. doi:10.1061/(ASCE)TE.1943-5436.0000390.

Talib, I., Nassrullah, Z., & Abduljaleel, L. (2023). A Case Study on Reducing Traffic Congestion–Proposals to Improve Current Conditions. Civil Engineering Journal (Iran), 9(10), 2456–2466. doi:10.28991/CEJ-2023-09-10-07.

Fani, A., Golroo, A., Ali Mirhassani, S., & Gandomi, A. H. (2022). Pavement maintenance and rehabilitation planning optimisation under budget and pavement deterioration uncertainty. International Journal of Pavement Engineering, 23(2), 414–424. doi:10.1080/10298436.2020.1748628.

Isradi, M., Prasetijo, J., Aden, T. S., & Rifai, A. I. (2023). Relationship of present serviceability index for flexible and rigid pavement in urban road damage assessment using pavement condition index and international roughness index. E3S Web of Conferences, 429. doi:10.1051/e3sconf/202342903012.

Yang, J., Lu, J. J., Gunaratne, M., & Dietrich, B. (2006). Modeling crack deterioration of flexible pavements: Comparison of recurrent Markov chains and artificial neural networks. Transportation Research Record, 1974, 18–25. doi:10.3141/1974-05.

Moreira, A. V., Tinoco, J., Oliveira, J. R. M., & Santos, A. (2018). An application of Markov chains to predict the evolution of performance indicators based on pavement historical data. International Journal of Pavement Engineering, 19(10), 937–948. doi:10.1080/10298436.2016.1224412.

Gao, H., & Zhang, X. (2013). A markov-based road maintenance optimization model considering user costs. Computer-Aided Civil and Infrastructure Engineering, 28(6), 451–464. doi:10.1111/mice.12009.

Abaza, K. A. (2023). Simplified Markovian-based pavement management model for sustainable long-term rehabilitation planning. Road Materials and Pavement Design, 24(3), 850–865. doi:10.1080/14680629.2022.2048055.

Salman, B., & Gursoy, B. (2022). Markov chain pavement deterioration prediction models for local street networks. Built Environment Project and Asset Management, 12(6), 853–870. doi:10.1108/BEPAM-09-2021-0117.

Isradi, M., Prasetijo, J., Rifai, A. I., Andraiko, H., & Zhang, G. (2024). The Prediction of Road Condition Value during Maintenance Based on Markov Process. International Journal on Advanced Science, Engineering and Information Technology, 14(3), 1083–1090. doi:10.18517/ijaseit.14.3.19475.

Abaza, K. A. (2017). Empirical Markovian-based models for rehabilitated pavement performance used in a life cycle analysis approach. Structure and Infrastructure Engineering, 13(5), 625–636. doi:10.1080/15732479.2016.1187180.

Pérez-Acebo, H., Linares-Unamunzaga, A., Rojí, E., & Gonzalo-Orden, H. (2020). IRI performance models for flexible pavements in two-lane roads until first maintenance and/or rehabilitation work. Coatings, 10(2), 97. doi:10.3390/coatings10020097.

Isradi, M., Prasetijo, J., Prasetyo, Y. D., Hartatik, N., & Rifai, A. I. (2023). Prediction of Service Life Base on Relationship Between Psi and Iri for Flexible Pavement. Proceedings on Engineering Sciences, 5(2), 267–274. doi:10.24874/PES05.02.009.

[23] Siahaan, D. A., & Surbakti, M. S. (2014). Comparative Analysis of IRI Values Based on NAASRA Reading Range Variations. Proceeding The 17th FSTPT International Symposium; 22 - 24 August, 22–24.

Kinasih, R. K., Prasetijo, J., Indriany, S., Isradi, M., & Biantoro, A. W. (2022). Analyzing Toll Road as a Solution to The Existing Highway Problem. Res Militaris, 12(6), 435–445.

Chen, W., Zheng, M., Tian, N., Ding, X., Li, N., & Zhang, W. (2023). Project-based sustainable timing series decision-making for pavement maintenance using multi-objective optimization: An innovation in traditional solutions. Journal of Cleaner Production, 407, 137172. doi:10.1016/j.jclepro.2023.137172.

Duc, N. T. T., Tai, P. D., & Buddhakulsomsiri, J. (2022). A Markovian approach to modeling a periodic order-up-to-level policy under stochastic discrete demand and lead time with lost sales. International Transactions in Operational Research, 29(2), 1132–1158. doi:10.1111/itor.13042.

Sazali, A., Setiadji, B. H., & Haryadi, B. (2021). Prediction of Road Handling Cost Using Markov Chain Method in Regency Road Network. International Journal of Integrated Engineering, 13(4), 275–283. doi:10.30880/ijie.2021.13.04.026.

de Oliveira, J. L. M., Davis, G., Khani, A., & Marasteanu, M. (2022). Heterogeneous Markov Chain Model to Predict Pavement Performance and Deterioration. Transportation Research Record, 2676(9), 568–581. doi:10.1177/03611981221088222.

Sati, A. S., Abu Dabous, S., & Zeiada, W. (2020). Pavement Deterioration Model Using Markov Chain and International Roughness Index. IOP Conference Series: Materials Science and Engineering, 812(1). doi:10.1088/1757-899X/812/1/012012.

Saha, P., Ksaibati, K., & Atadero, R. (2017). Developing Pavement Distress Deterioration Models for Pavement Management System Using Markovian Probabilistic Process. Advances in Civil Engineering, 2017, 1–9. doi:10.1155/2017/8292056.

Mills, J. A., & Parent, O. (2021). Bayesian Markov Chain Monte Carlo Estimation. In Handbook of Regional Science: Second and Extended Edition: With 238 Figures and 78 Tables, 2073–2096. doi:10.1007/978-3-662-60723-7_89.

Surendrakumar, K., Prashant, N., & Mayuresh, P. (2013). Application of Markovian Probabilistic Process to Develop A Decision Support System for Pavement Maintenance Management. International Journal of Scientific & Technology Research, 2(8), 295–303.

Schorner, P., Tottel, L., Doll, J., & Zollner, J. M. (2019). Predictive trajectory planning in situations with hidden road users using partially observable markov decision processes. IEEE Intelligent Vehicles Symposium, Proceedings, 2019-June(Iv), 2299–2306. doi:10.1109/IVS.2019.8814022.

Abaza, K. A. (2021). Empirical-Markovian approach for estimating the flexible pavement structural capacity: Caltrans method as a case study. International Journal of Transportation Science and Technology, 10(2), 156–166. doi:10.1016/j.ijtst.2020.12.007.

Wang, Z., Guo, N., Wang, S., & Xu, Y. (2021). Prediction of highway asphalt pavement performance based on Markov chain and artificial neural network approach. Journal of Supercomputing, 77(2), 1354–1376. doi:10.1007/s11227-020-03329-4.

Wei, B., Guo, C., & Deng, M. (2022). An Innovation of the Markov Probability Model for Predicting the Remaining Service Life of Civil Airport Rigid Pavements. Materials, 15(17), 6082. doi:10.3390/ma15176082.

Vallès-Vallès, D., & Torres-Machi, C. (2023). Deterioration of Flexible Pavements Induced by Flooding: Case Study Using Stochastic Monte Carlo Simulations in Discrete-Time Markov Chains. Journal of Infrastructure Systems, 29(1), 05022009. doi:10.1061/jitse4.iseng-2109.

Elsaid, F., Amador-Jimenez, L., & Mazaheri, A. (2023). Estimating Layers’ Structural Coefficients for Flexible Pavements in Costa Rica Road’s Network Using Full Bayesian Markov Chain Monte Carlo Approach. International Journal of Pavement Research and Technology, 16(3), 731–744. doi:10.1007/s42947-022-00160-3.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-09-012

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Muhammad Isradi, Joewono Prasetijo, Andri Irfan Rifai, Reni Karno Kinasih

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message