Flexural Performance of a New Composite Double PSSDB Slab System Filled with Recycled Concrete
Downloads
Doi: 10.28991/CEJ-2024-010-12-03
Full Text: PDF
Downloads
[2] Ahmed, E., Wan Badaruzzaman, W. H., & Wright, H. D. (2002). Two-way bending behavior of profiled steel sheet dry board composite panel system. Thin-Walled Structures, 40(11), 971–990. doi:10.1016/s0263-8231(02)00039-3.
[3] Wan Badaruzzaman, W. H., Zain, M. F. M., Akhand, A. M., & Ahmed, E. (2003). Dry boards as load bearing element in the profiled steel sheet dry board floor panel system - Structural performance and applications. Construction and Building Materials, 17(4), 289–297. doi:10.1016/S0950-0618(02)00105-8.
[4] Ahmed, E., Wan Badaruzzaman, W. H., & Wright, H. D. (2000). Experimental and finite element study of profiled steel sheet dry board folded plate structures. Thin-Walled Structures, 38(2), 125–143. doi:10.1016/S0263-8231(00)00039-2.
[5] Wan Badaruzzaman, W. H., & Ahmed, E. (2003). Finite Element Prediction of the Behavior of Profiled Steel Sheet Dry Board Folded Plate Structures an Improved Model (Research Note). International Journal of Engineering, 16(1), 21-32.
[6] Ahmed, E., & Badaruzzaman, W. H. W. (2013). Vibration performance of Profiled Steel Sheet Dry Board composite floor panel. KSCE Journal of Civil Engineering, 17(1), 133–138. doi:10.1007/s12205-013-1114-2.
[7] Wan Badaruzzaman, W. H., Zain, M. F. M., Shodiq, H. M., Akhand, A. M., & Sahari, J. (2003). Fire resistance performance of profiled steel sheet dry board (PSSDB) flooring panel system. Building and Environment, 38(7), 907–912. doi:10.1016/S0360-1323(03)00029-5.
[8] Al-Shaikhli, M. S., Wan Badaruzzaman, W. H., Baharom, S., & Al-Zand, A. W. (2017). The two-way flexural performance of the PSSDB floor system with infill material. Journal of Constructional Steel Research, 138, 79–92. doi:10.1016/j.jcsr.2017.06.039.
[9] Sutiman, N. A., Majid, M. A., Jaini, Z. M., & Roslan, A. S. (2021). Structural Behavior of Lightweight Composite Slab System. International Journal of Integrated Engineering, 13(3), 57–65. doi:10.30880/ijie.2021.13.03.007.
[10] Sarina Ismail, R. A. Z. A. (2017). Finite Element Modeling and Analysis of Sandwich Dry Floor Slab. International Journal of Civil & Environmental Engineering, 17(1), 1-26.
[11] Rahmadi, A. P., Wan Badaruzzaman, W. H., & Arifin, A. K. (2013). Prediction of deflection of the composite profiled steel sheet MDF-board (PSSMDFB) floor system. Procedia Engineering, 54, 457–464. doi:10.1016/j.proeng.2013.03.041.
[12] Gandomkar, F. A., Badaruzzaman, W. H. W., & Osman, S. A. (2012). Dynamic response of low frequency Profiled Steel Sheet Dry Board with Concrete infill (PSSDBC) floor system under human walking load. Latin American Journal of Solids and Structures, 9(1), 21–41. doi:10.1590/s1679-78252012000100002.
[13] Gandomkar, F. A., Wan Badaruzzaman, W. H., Osman, S. A., & Ismail, A. (2013). Experimental and numerical investigation of the natural frequencies of the composite profiled steel sheet dry board (PSSDB) system. Journal of the South African Institution of Civil Engineering, 55(1), 11–21.
[14] Bavan, M., & Bin Baharom, S. (2014). Improvement of Ultimate Strength of Continuous Profiled Steel Sheet Dry Board (PSSDB) Floor Slab. The International Conference on Civil and Architecture Engineering, 10(10), 1–1. doi:10.21608/iccae.2014.44200.
[15] Jaffar, M. I., Badaruzzaman, W. W., Abdullah, M. A. B., Baharom, S., Moga, L. G., & Sandu, A. V. (2015). Relationship between panel stiffness and mid-span deflection in Profiled steel sheeting dry board with geopolymer concrete infill. Materiale Plastice, 52(2), 243-248.
[16] Jaffar, M. I., Wan Badaruzzaman, W. H., Al Bakri Abdullah, M. M., Kamarulzaman, K., & Seraji, M. (2015). Effect of Geopolymer Concrete Infill on Profiled Steel Sheeting Half Dry Board (PSSHDB) Floor System Subjected to Bending Moment. Applied Mechanics and Materials, 754–755, 354–358. doi:10.4028/www.scientific.net/amm.754-755.354.
[17] Jaffar, M. I., Wan Badaruzzaman, W. H., & Baharom, S. (2016). Experimental tests on bending behavior of profiled steel sheeting dry board composite floor with geopolymer concrete infill. Latin American Journal of Solids and Structures, 13(2), 272–295. doi:10.1590/1679-78252028.
[18] Seraji, M., Wan Badaruzzaman, W. H., & Jaffar, M. I. (2015). Numerical Investigation on the Effect of Material Thicknesses on Membrane Action Development in PSSDB Floor System. 2nd International Conference on Geological and Civil Engineering, 10-11 January, 2015, Dubai, United Arab Emirates.
[19] Seraji, M., Badaruzzaman, W. H. W., & Osman, S. A. (2012). Experimental Study on the Compressive Membrane Action in Profiled Steel Sheet Dry Board (PSSDB) Floor System. International Journal on Advanced Science, Engineering and Information Technology, 2(2), 159. doi:10.18517/ijaseit.2.2.176.
[20] Gandomkar, F. A., Badruzzaman, W. H. W., Osman, S. A., & Ismail, I. (2013). Dynamic response of low frequency Profiled Steel Sheet Dry Board (PSSDB) floor system. Latin American Journal of Solids and Structures, 10(6), 1135–1154. doi:10.1590/S1679-78252013000600004.
[21] Gandomkar, F. A., Wan Badaruzzaman, W. H., & Osman, S. A. (2011). The natural frequencies of composite profiled steel sheet dry board with concrete infill (PSSDBC) system. Latin American Journal of Solids and Structures, 8(3), 351–372. doi:10.1590/S1679-78252011000300009.
[22] Roslan, A. S., Majid, M. A., Jaini, Z. M., Ismail, M. H., & Sutiman, N. A. (2022). A Preliminary Study on Vibration Response of Profiled Steel Sheet Dry Board (PSSDB) System under Heel-drop Test. International Journal of Integrated Engineering, 14(5), 114–121. doi:10.30880/ijie.2022.14.05.013.
[23] Gandomkar, F. A., Parsafar, S., Tosee, V. R., & Samimifard, N. (2021). Dynamic Behavior of Composite Floor Consisting Profiled Steel Sheet and Dry Board Under Explosion Load. Amirkabir Journal of Civil Engineering, 53(7), 633-636. doi:10.22060/ceej.2020.17546.6595.
[24] Kim, H. Y., & Jeong, Y. J. (2009). Steel-concrete composite bridge deck slab with profiled sheeting. Journal of Constructional Steel Research, 65(8–9), 1751–1762. doi:10.1016/j.jcsr.2009.04.016.
[25] Nakamura, S. I., Momiyama, Y., Hosaka, T., & Homma, K. (2002). New technologies of steel/concrete composite bridges. Journal of Constructional Steel Research, 58(1), 99–130. doi:10.1016/S0143-974X(01)00030-X.
[26] Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211–228. doi:10.1016/j.jcsr.2014.04.016.
[27] Han, L. H., Yang, Y. F., & Tao, Z. (2003). Concrete-filled thin-walled steel SHS and RHS beam-columns subjected to cyclic loading. Thin-Walled Structures, 41(9), 801–833. doi:10.1016/S0263-8231(03)00030-2.
[28] Wang, W. H., Han, L. H., Li, W., & Jia, Y. H. (2014). Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate. Construction and Building Materials, 51, 352–363. doi:10.1016/j.conbuildmat.2013.10.049.
[29] Al Zand, A. W., Badaruzzaman, W. H. W., & Tawfeeq, W. M. (2020). New empirical methods for predicting flexural capacity and stiffness of CFST beam. Journal of Constructional Steel Research, 164, 105778. doi:10.1016/j.jcsr.2019.105778.
[30] Fang, C., Zhou, F., & Luo, C. (2018). Cold-formed stainless steel RHSs/SHSs under combined compression and cyclic bending. Journal of Constructional Steel Research, 141, 9–22. doi:10.1016/j.jcsr.2017.11.001.
[31] Al Zand, A. W., Wan Badaruzzaman, W. H., Ali, M. M., Hasan, Q. A., & Al-Shaikhli, M. S. (2020). Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners. Steel and Composite Structures, 34(1), 123–139. doi:10.12989/scs.2020.34.1.123.
[32] Sifan, M., Gatheeshgar, P., Navaratnam, S., Nagaratnam, B., Poologanathan, K., Thamboo, J., & Suntharalingam, T. (2022). Flexural behaviour and design of hollow flange cold-formed steel beam filled with lightweight normal and lightweight high strength concrete. Journal of Building Engineering, 48, 103878. doi:10.1016/j.jobe.2021.103878.
[33] Liejy, M. C., Al Zand, A. W., Mutalib, A. A., Abdulhameed, A. A., Kaish, A. B. M. A., Tawfeeq, W. M., Baharom, S., Al-Attar, A. A., Hanoon, A. N., & Yaseen, Z. M. (2023). Prediction of the Bending Strength of a Composite Steel Beam–Slab Member Filled with Recycled Concrete. Materials, 16(7), 2748. doi:10.3390/ma16072748.
[34] Liejy, M. C., Al Zand, A. W., Mutalib, A. A., Alghaaeb, M. F., Abdulhameed, A. A., Al-Attar, A. A., Tawfeeq, W. M., & Hilo, S. J. (2023). Flexural Performance of a Novel Steel Cold-Formed Beam–PSSDB Slab Composite System Filled with Concrete Material. Buildings, 13(2), 432. doi:10.3390/buildings13020432.
[35] Abendeh, R., Ahmad, H. S., & Hunaiti, Y. M. (2016). Experimental studies on the behavior of concrete-filled steel tubes incorporating crumb rubber. Journal of Constructional Steel Research, 122, 251–260. doi:10.1016/j.jcsr.2016.03.022.
[36] Ataria, R. B., & Wang, Y. C. (2022). Mechanical Properties and Durability Performance of Recycled Aggregate Concrete Containing Crumb Rubber. Materials, 15(5), 1776. doi:10.3390/ma15051776.
[37] Alizadeh, M., Eftekhar, M. R., Asadi, P., & Mostofinejad, D. (2024). Enhancing the mechanical properties of crumb rubber concrete through polypropylene mixing via a pre-mixing technique. Case Studies in Construction Materials, 21, 3569. doi:10.1016/j.cscm.2024.e03569.
[38] Al Zand, A. W., Ali, M. M., Al-Ameri, R., Badaruzzaman, W. H. W., Tawfeeq, W. M., Hosseinpour, E., & Yaseen, Z. M. (2021). Flexural strength of internally stiffened tubular steel beam filled with recycled concrete materials. Materials, 14(21), 6334. doi:10.3390/ma14216334.
[39] D'Orazio, M., Stipa, P., Sabbatini, S., & Maracchini, G. (2020). Experimental investigation on the durability of a novel lightweight prefabricated reinforced-EPS based construction system. Construction and Building Materials, 252, 119134. doi:10.1016/j.conbuildmat.2020.119134.
[40] El Gamal, S., Al-Jardani, Y., Meddah, M. S., Abu Sohel, K., & Al-Saidy, A. (2024). Mechanical and thermal properties of lightweight concrete with recycled expanded polystyrene beads. European Journal of Environmental and Civil Engineering, 28(1), 80–94. doi:10.1080/19648189.2023.2200830.
[41] Shabbar, R., Almusawi, A. M., & Taher, J. K. (2024). Investigation into the mechanical and thermal properties of lightweight mortar using commercial beads or recycled expanded polystyrene. Open Engineering, 14(1), 20220592. doi:10.1515/eng-2022-0592.
[42] Al Zand, A. W., Alghaaeb, M. F., Liejy, M. C., Mutalib, A. A., & Al-Ameri, R. (2022). Stiffening Performance of Cold-Formed C-Section Beam Filled with Lightweight-Recycled Concrete Mixture. Materials, 15(9), 2982. doi:10.3390/ma15092982.
[43] Jaffar, M. I., Wan Badaruzzaman, W. H., Al Bakri Abdullah, M. M., & Abd Razak, R. (2015). Comparative Study Floor Flexural Behavior of Profiled Steel Sheeting Dry Board between Normal Concrete and Geopolymer Concrete In-Filled. Applied Mechanics and Materials, 754–755, 364–368. doi:10.4028/www.scientific.net/amm.754-755.364.
[44] ASTM E8/E8M-22. (2024). Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, Pennsylvania, United States. doi:10.1520/E0008_E0008M-22.
[45] Al-Shaikhli, M. S., Badaruzzaman, W. H. W., & Al Zand, A. W. (2022). Experimental and numerical study on the PSSDB system as two-way floor units. Steel and Composite Structures, 42(1), 33–48. doi:10.12989/scs.2022.42.1.033.
[46] B.S 1881-116. (1983). Method for Determination of Compressive Strength of Concrete Cubes. British Standards Institution, London, United Kingdom.
[47] Lai, Z., Varma, A. H., & Zhang, K. (2014). Noncompact and slender rectangular CFT members: Experimental database, analysis, and design. Journal of Constructional Steel Research, 101, 455–468. doi:10.1016/j.jcsr.2014.06.004.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.