Flexural Performance of a New Composite Double PSSDB Slab System Filled with Recycled Concrete
Abstract
Doi: 10.28991/CEJ-2024-010-12-03
Full Text: PDF
Keywords
References
Wright, H. D., Evans, H. R., & Burt, C. A. (1989). Profiled steel sheet/dry boarding composite floors. Structural (The) engineer. Part A: the Journal of the Institution of Structural Engineers-monthly, 67(7), 114-120.
Ahmed, E., Wan Badaruzzaman, W. H., & Wright, H. D. (2002). Two-way bending behavior of profiled steel sheet dry board composite panel system. Thin-Walled Structures, 40(11), 971–990. doi:10.1016/s0263-8231(02)00039-3.
Wan Badaruzzaman, W. H., Zain, M. F. M., Akhand, A. M., & Ahmed, E. (2003). Dry boards as load bearing element in the profiled steel sheet dry board floor panel system - Structural performance and applications. Construction and Building Materials, 17(4), 289–297. doi:10.1016/S0950-0618(02)00105-8.
Ahmed, E., Wan Badaruzzaman, W. H., & Wright, H. D. (2000). Experimental and finite element study of profiled steel sheet dry board folded plate structures. Thin-Walled Structures, 38(2), 125–143. doi:10.1016/S0263-8231(00)00039-2.
Wan Badaruzzaman, W. H., & Ahmed, E. (2003). Finite Element Prediction of the Behavior of Profiled Steel Sheet Dry Board Folded Plate Structures an Improved Model (Research Note). International Journal of Engineering, 16(1), 21-32.
Ahmed, E., & Badaruzzaman, W. H. W. (2013). Vibration performance of Profiled Steel Sheet Dry Board composite floor panel. KSCE Journal of Civil Engineering, 17(1), 133–138. doi:10.1007/s12205-013-1114-2.
Wan Badaruzzaman, W. H., Zain, M. F. M., Shodiq, H. M., Akhand, A. M., & Sahari, J. (2003). Fire resistance performance of profiled steel sheet dry board (PSSDB) flooring panel system. Building and Environment, 38(7), 907–912. doi:10.1016/S0360-1323(03)00029-5.
Al-Shaikhli, M. S., Wan Badaruzzaman, W. H., Baharom, S., & Al-Zand, A. W. (2017). The two-way flexural performance of the PSSDB floor system with infill material. Journal of Constructional Steel Research, 138, 79–92. doi:10.1016/j.jcsr.2017.06.039.
Sutiman, N. A., Majid, M. A., Jaini, Z. M., & Roslan, A. S. (2021). Structural Behavior of Lightweight Composite Slab System. International Journal of Integrated Engineering, 13(3), 57–65. doi:10.30880/ijie.2021.13.03.007.
Sarina Ismail, R. A. Z. A. (2017). Finite Element Modeling and Analysis of Sandwich Dry Floor Slab. International Journal of Civil & Environmental Engineering, 17(1), 1-26.
Rahmadi, A. P., Wan Badaruzzaman, W. H., & Arifin, A. K. (2013). Prediction of deflection of the composite profiled steel sheet MDF-board (PSSMDFB) floor system. Procedia Engineering, 54, 457–464. doi:10.1016/j.proeng.2013.03.041.
Gandomkar, F. A., Badaruzzaman, W. H. W., & Osman, S. A. (2012). Dynamic response of low frequency Profiled Steel Sheet Dry Board with Concrete infill (PSSDBC) floor system under human walking load. Latin American Journal of Solids and Structures, 9(1), 21–41. doi:10.1590/s1679-78252012000100002.
Gandomkar, F. A., Wan Badaruzzaman, W. H., Osman, S. A., & Ismail, A. (2013). Experimental and numerical investigation of the natural frequencies of the composite profiled steel sheet dry board (PSSDB) system. Journal of the South African Institution of Civil Engineering, 55(1), 11–21.
Bavan, M., & Bin Baharom, S. (2014). Improvement of Ultimate Strength of Continuous Profiled Steel Sheet Dry Board (PSSDB) Floor Slab. The International Conference on Civil and Architecture Engineering, 10(10), 1–1. doi:10.21608/iccae.2014.44200.
Jaffar, M. I., Badaruzzaman, W. W., Abdullah, M. A. B., Baharom, S., Moga, L. G., & Sandu, A. V. (2015). Relationship between panel stiffness and mid-span deflection in Profiled steel sheeting dry board with geopolymer concrete infill. Materiale Plastice, 52(2), 243-248.
Jaffar, M. I., Wan Badaruzzaman, W. H., Al Bakri Abdullah, M. M., Kamarulzaman, K., & Seraji, M. (2015). Effect of Geopolymer Concrete Infill on Profiled Steel Sheeting Half Dry Board (PSSHDB) Floor System Subjected to Bending Moment. Applied Mechanics and Materials, 754–755, 354–358. doi:10.4028/www.scientific.net/amm.754-755.354.
Jaffar, M. I., Wan Badaruzzaman, W. H., & Baharom, S. (2016). Experimental tests on bending behavior of profiled steel sheeting dry board composite floor with geopolymer concrete infill. Latin American Journal of Solids and Structures, 13(2), 272–295. doi:10.1590/1679-78252028.
Seraji, M., Wan Badaruzzaman, W. H., & Jaffar, M. I. (2015). Numerical Investigation on the Effect of Material Thicknesses on Membrane Action Development in PSSDB Floor System. 2nd International Conference on Geological and Civil Engineering, 10-11 January, 2015, Dubai, United Arab Emirates.
Seraji, M., Badaruzzaman, W. H. W., & Osman, S. A. (2012). Experimental Study on the Compressive Membrane Action in Profiled Steel Sheet Dry Board (PSSDB) Floor System. International Journal on Advanced Science, Engineering and Information Technology, 2(2), 159. doi:10.18517/ijaseit.2.2.176.
Gandomkar, F. A., Badruzzaman, W. H. W., Osman, S. A., & Ismail, I. (2013). Dynamic response of low frequency Profiled Steel Sheet Dry Board (PSSDB) floor system. Latin American Journal of Solids and Structures, 10(6), 1135–1154. doi:10.1590/S1679-78252013000600004.
Gandomkar, F. A., Wan Badaruzzaman, W. H., & Osman, S. A. (2011). The natural frequencies of composite profiled steel sheet dry board with concrete infill (PSSDBC) system. Latin American Journal of Solids and Structures, 8(3), 351–372. doi:10.1590/S1679-78252011000300009.
Roslan, A. S., Majid, M. A., Jaini, Z. M., Ismail, M. H., & Sutiman, N. A. (2022). A Preliminary Study on Vibration Response of Profiled Steel Sheet Dry Board (PSSDB) System under Heel-drop Test. International Journal of Integrated Engineering, 14(5), 114–121. doi:10.30880/ijie.2022.14.05.013.
Gandomkar, F. A., Parsafar, S., Tosee, V. R., & Samimifard, N. (2021). Dynamic Behavior of Composite Floor Consisting Profiled Steel Sheet and Dry Board Under Explosion Load. Amirkabir Journal of Civil Engineering, 53(7), 633-636. doi:10.22060/ceej.2020.17546.6595.
Kim, H. Y., & Jeong, Y. J. (2009). Steel-concrete composite bridge deck slab with profiled sheeting. Journal of Constructional Steel Research, 65(8–9), 1751–1762. doi:10.1016/j.jcsr.2009.04.016.
Nakamura, S. I., Momiyama, Y., Hosaka, T., & Homma, K. (2002). New technologies of steel/concrete composite bridges. Journal of Constructional Steel Research, 58(1), 99–130. doi:10.1016/S0143-974X(01)00030-X.
Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211–228. doi:10.1016/j.jcsr.2014.04.016.
Han, L. H., Yang, Y. F., & Tao, Z. (2003). Concrete-filled thin-walled steel SHS and RHS beam-columns subjected to cyclic loading. Thin-Walled Structures, 41(9), 801–833. doi:10.1016/S0263-8231(03)00030-2.
Wang, W. H., Han, L. H., Li, W., & Jia, Y. H. (2014). Behavior of concrete-filled steel tubular stub columns and beams using dune sand as part of fine aggregate. Construction and Building Materials, 51, 352–363. doi:10.1016/j.conbuildmat.2013.10.049.
Al Zand, A. W., Badaruzzaman, W. H. W., & Tawfeeq, W. M. (2020). New empirical methods for predicting flexural capacity and stiffness of CFST beam. Journal of Constructional Steel Research, 164, 105778. doi:10.1016/j.jcsr.2019.105778.
Fang, C., Zhou, F., & Luo, C. (2018). Cold-formed stainless steel RHSs/SHSs under combined compression and cyclic bending. Journal of Constructional Steel Research, 141, 9–22. doi:10.1016/j.jcsr.2017.11.001.
Al Zand, A. W., Wan Badaruzzaman, W. H., Ali, M. M., Hasan, Q. A., & Al-Shaikhli, M. S. (2020). Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners. Steel and Composite Structures, 34(1), 123–139. doi:10.12989/scs.2020.34.1.123.
Sifan, M., Gatheeshgar, P., Navaratnam, S., Nagaratnam, B., Poologanathan, K., Thamboo, J., & Suntharalingam, T. (2022). Flexural behaviour and design of hollow flange cold-formed steel beam filled with lightweight normal and lightweight high strength concrete. Journal of Building Engineering, 48, 103878. doi:10.1016/j.jobe.2021.103878.
Liejy, M. C., Al Zand, A. W., Mutalib, A. A., Abdulhameed, A. A., Kaish, A. B. M. A., Tawfeeq, W. M., Baharom, S., Al-Attar, A. A., Hanoon, A. N., & Yaseen, Z. M. (2023). Prediction of the Bending Strength of a Composite Steel Beam–Slab Member Filled with Recycled Concrete. Materials, 16(7), 2748. doi:10.3390/ma16072748.
Liejy, M. C., Al Zand, A. W., Mutalib, A. A., Alghaaeb, M. F., Abdulhameed, A. A., Al-Attar, A. A., Tawfeeq, W. M., & Hilo, S. J. (2023). Flexural Performance of a Novel Steel Cold-Formed Beam–PSSDB Slab Composite System Filled with Concrete Material. Buildings, 13(2), 432. doi:10.3390/buildings13020432.
Abendeh, R., Ahmad, H. S., & Hunaiti, Y. M. (2016). Experimental studies on the behavior of concrete-filled steel tubes incorporating crumb rubber. Journal of Constructional Steel Research, 122, 251–260. doi:10.1016/j.jcsr.2016.03.022.
Ataria, R. B., & Wang, Y. C. (2022). Mechanical Properties and Durability Performance of Recycled Aggregate Concrete Containing Crumb Rubber. Materials, 15(5), 1776. doi:10.3390/ma15051776.
Alizadeh, M., Eftekhar, M. R., Asadi, P., & Mostofinejad, D. (2024). Enhancing the mechanical properties of crumb rubber concrete through polypropylene mixing via a pre-mixing technique. Case Studies in Construction Materials, 21, 3569. doi:10.1016/j.cscm.2024.e03569.
Al Zand, A. W., Ali, M. M., Al-Ameri, R., Badaruzzaman, W. H. W., Tawfeeq, W. M., Hosseinpour, E., & Yaseen, Z. M. (2021). Flexural strength of internally stiffened tubular steel beam filled with recycled concrete materials. Materials, 14(21), 6334. doi:10.3390/ma14216334.
D’Orazio, M., Stipa, P., Sabbatini, S., & Maracchini, G. (2020). Experimental investigation on the durability of a novel lightweight prefabricated reinforced-EPS based construction system. Construction and Building Materials, 252, 119134. doi:10.1016/j.conbuildmat.2020.119134.
El Gamal, S., Al-Jardani, Y., Meddah, M. S., Abu Sohel, K., & Al-Saidy, A. (2024). Mechanical and thermal properties of lightweight concrete with recycled expanded polystyrene beads. European Journal of Environmental and Civil Engineering, 28(1), 80–94. doi:10.1080/19648189.2023.2200830.
Shabbar, R., Almusawi, A. M., & Taher, J. K. (2024). Investigation into the mechanical and thermal properties of lightweight mortar using commercial beads or recycled expanded polystyrene. Open Engineering, 14(1), 20220592. doi:10.1515/eng-2022-0592.
Al Zand, A. W., Alghaaeb, M. F., Liejy, M. C., Mutalib, A. A., & Al-Ameri, R. (2022). Stiffening Performance of Cold-Formed C-Section Beam Filled with Lightweight-Recycled Concrete Mixture. Materials, 15(9), 2982. doi:10.3390/ma15092982.
Jaffar, M. I., Wan Badaruzzaman, W. H., Al Bakri Abdullah, M. M., & Abd Razak, R. (2015). Comparative Study Floor Flexural Behavior of Profiled Steel Sheeting Dry Board between Normal Concrete and Geopolymer Concrete In-Filled. Applied Mechanics and Materials, 754–755, 364–368. doi:10.4028/www.scientific.net/amm.754-755.364.
ASTM E8/E8M-22. (2024). Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, Pennsylvania, United States. doi:10.1520/E0008_E0008M-22.
Al-Shaikhli, M. S., Badaruzzaman, W. H. W., & Al Zand, A. W. (2022). Experimental and numerical study on the PSSDB system as two-way floor units. Steel and Composite Structures, 42(1), 33–48. doi:10.12989/scs.2022.42.1.033.
B.S 1881-116. (1983). Method for Determination of Compressive Strength of Concrete Cubes. British Standards Institution, London, United Kingdom.
Lai, Z., Varma, A. H., & Zhang, K. (2014). Noncompact and slender rectangular CFT members: Experimental database, analysis, and design. Journal of Constructional Steel Research, 101, 455–468. doi:10.1016/j.jcsr.2014.06.004.
DOI: 10.28991/CEJ-2024-010-12-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 ZAID ABDULLAH ALSUDANI, Fatimah De’nan, Ahmed Wadood Al Zand, Noorhazlinda Abd Rahman, Mohammed Chyad Liejy
![Creative Commons License](http://licensebuttons.net/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.