Sluice Gate Operation and Managed Water Levels Improve Predicted Estuarine Lake Water Quality

Semin Kim

Abstract


Saemangeum Lake, an artificial estuarine lake, suffers from a pollutant load from an upstream watershed that is insufficiently mitigated by current load reduction measures. However, no studies have reported simulated flow direction and velocity for a lake. This study aimed to present an alternative solution based on managing water levels and sluice gate operation. Data were collected on water quality, sluice gate operation, water levels, tidal currents, and flow velocities. Next, the inflow and outflow volumes through the sluice gates were calculated. The Delft3D model was applied to predict water quality in a number of simulated scenarios. Finally, streamline and vorticity were calculated to evaluate hydraulic phenomena, while the ecology-based seawater quality index was employed to evaluate water quality. Analysis of flow characteristics revealed a large-scale clockwise vortex formed in the area where the Mangyeong River meets one of the sluice gates. It revealed a two-layer circulation with different flows in the surface and bottom layers. Evaluation of predicted water quality showed that one-way circulation, alternated in 15-day cycles, significantly improved major water quality items at most stations. Collectively, these findings demonstrate the effect that gate operation and managed water levels can have on the water quality of estuarine lakes.

 

Doi: 10.28991/CEJ-2025-011-01-015

Full Text: PDF


Keywords


Saemangeum Lake; Water Quality; Sluice Gate Operation; Managed Water Level; Delft3D Model; Estuarine Lake Management; Ecology-Based Seawater Quality Index.

References


Schubel, J. R., & Carter, H. H. (1984). the Estuary As a Filter for Fine-Grained Suspended Sediment. The Estuary As a Filter, Academic Press, 81-105. doi:10.1016/b978-0-12-405070-9.50011-6.

Morris, A. W. (1985). Estuarine chemistry and general survey strategy. Practical estuarine chemistry: a handbook. Cambridge University Press, Cambridge, United Kingdom.

Jeong, Y. H., & Yang, J. S. (2015). The Long-term Variations of Water Qualities in the Saemangeum Salt-Water Lake after the Sea-dike Construction. Journal of the Korean Society for Marine Environment & Energy, 18(2), 51–63. doi:10.7846/jkosmee.2015.18.2.51.

Lee, C. H., Kang, D. S., Nam, C. H., Lee, B. G., & Ryu, H. G. (2001). Integrated Management Strategies for Estuarine Environments in Korea. Korea Maritime Institute, Seoul, South Korea.

Hirsch, P. E., Schillinger, M., Appoloni, K., Burkhardt-Holm, P., & Weigt, H. (2016). Integrating economic and ecological benchmarking for a sustainable development of hydropower. Sustainability (Switzerland), 8(9), 875. doi:10.3390/su8090875.

Jansky, L., Murakami, M., & Pachova, N. I. (2004). The Danube : Environmental Monitoring of an International River. United Nations University Press, Hong Kong.

McCully, P. (1996). Silenced rivers: the ecology and politics of large dams. International Affairs, 73(4), 799–800. doi:10.2307/2624501.

Guinder, V. A., Popovich, C. A., & Perillo, G. M. E. (2009). Particulate suspended matter concentrations in the Bahía Blanca Estuary, Argentina: Implication for the development of phytoplankton blooms. Estuarine, Coastal and Shelf Science, 85(1), 157–165. doi:10.1016/j.ecss.2009.05.022.

Friedl, G., & Wüest, A. (2002). Disrupting biogeochemical cycles - Consequences of damming. Aquatic Sciences, 64(1), 55–65. doi:10.1007/s00027-002-8054-0.

Baxter, R. M. (1977). Environmental Effects of Dams and Impoundments. Annual Review of Ecology and Systematics, 8(1), 255–283. doi:10.1146/annurev.es.08.110177.001351.

Rosenberg, D. M., Berkes, F., Bodaly, R. A., Hecky, R. E., Kelly, C. A., & Rudd, J. W. M. (1997). Large-scale impacts of hydroelectric development. Environmental Reviews, 5(1), 27–54. doi:10.1139/a97-001.

Luo, X. (2005). Sediment-water flux of hydrophobic organic chemicals due to molecular diffusion and bioturbation. University of California, Santa Barbara, United States.

Różkowski, J., & Rzętała, M. (2021). Uzbekistan’s aquatic environment and water management as an area of interest for hydrology and thematic tourism. Journal of Environmental Management and Tourism, 12(3), 642–653. doi:10.14505/jemt.v12.3(51).04.

Bartram, J., & Pedley, S. (1996). Water Quality Monitoring- A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes. United Nations Environment Programme; World Health Organization. CRC Press, Florida, United States. doi:10.1002/ejoc.201200111.

Na, E. H., & Park, S. S. (2005). A three-dimensional modeling study of Lake Paldang for spatial and temporal distributions of temperature, current, residence time, and spreading pattern of incoming flows. Journal of Korean Society of Environmental Engineers, 27(9), 978-988.

Kaçikoç, M., & Beyhan, M. (2014). Hydrodynamic and water quality modeling of lake eğirdir. Clean - Soil, Air, Water, 42(11), 1573–1582. doi:10.1002/clen.201300455.

Amorim, L. F., Martins, J. R. S., Nogueira, F. F., Silva, F. P., Duarte, B. P. S., Magalhães, A. A. B., & Vinçon-Leite, B. (2021). Hydrodynamic and ecological 3D modeling in tropical lakes. SN Applied Sciences, 3(4), 444. doi:10.1007/s42452-021-04272-6.

Zheng, X. N., Wu, D. X., Huang, C. Q., Wu, Q. Y., & Guan, Y. T. (2022). Impacts of hydraulic retention time and inflow water quality on algal growth in a shallow lake supplied with reclaimed water. Water Cycle, 3, 71–78. doi:10.1016/j.watcyc.2022.04.004.

Elshemy, M., Khadr, M., Atta, Y., & Ahmed, A. (2016). Hydrodynamic and water quality modeling of Lake Manzala (Egypt) under data scarcity. Environmental Earth Sciences, 75(19), 1329. doi:10.1007/s12665-016-6136-x.

Qin, Z., He, Z., Wu, G., Tang, G., & Wang, Q. (2022). Developing Water-Quality Model for Jingpo Lake Based on EFDC. Water (Switzerland), 14(17), 2596. doi:10.3390/w14172596.

Wu, T., Su, B., Wu, H., Wang, S., Wang, G., Ratnaweera, H., Weerakoon, S. B., Zhang, Z., & Yao, B. (2022). Scenario optimization of water supplement and outflow management in Yilong Lake based on the EFDC model. Hydrology Research, 53(4), 519–531. doi:10.2166/nh.2022.113.

Sarpong, L., Li, Y., Cheng, Y., & Nooni, I. K. (2023). Temporal characteristics and trends of nitrogen loadings in lake Taihu, China and its influencing mechanism at multiple timescales. Journal of Environmental Management, 344, 118406. doi:10.1016/j.jenvman.2023.118406.

Shin, Y. R., Jung, J. Y., Choi, J. H., & Jung, K. W. (2012). Hydrodynamic modeling of Saemangeum reservoir and watershed using HSPF and EFDC. Journal of Korean Society on Water Environment, 28(3), 384-393.

Cho, C. W., Song, Y. S., & Bang, K. Y. (2020). A Study on the Influence of the Saemangeum Sluice-Gates Effluent Discharge using the Particle Tracking Model. Journal of Korean Society of Coastal and Ocean Engineers, 32(4), 211–222. doi:10.9765/kscoe.2020.32.4.211.

Kim, S., & Park, Y. (2023). An Improved Model for Water Quality Management Accounting for the Spatiotemporal Benthic Flux Rate. Water (Switzerland), 15(12), 2219. doi:10.3390/w15122219.

Jung, J., Shin, Y., K, C., Jang, J., & Choi, J. (2011). Application of HSPF-GEMSS Model for Analysis of Salinity in Saemangeum. Korean Studies Information Service System, 176.

Kliem, N., & Pietrzak, J. D. (1999). On the pressure gradient error in sigma coordinate ocean models: A comparison with a laboratory experiment. Journal of Geophysical Research: Oceans, 104(C12), 29781–29799. doi:10.1029/1999jc900188.

Galelli, S., Castelletti, A., & Goedbloed, A. (2015). High-Performance Integrated Control of water quality and quantity in urban water reservoirs. Water Resources Research, 51(11), 9053–9072. doi:10.1002/2015WR017595.

Tabarestani, M. K., & Fouladfar, H. (2022). Effect of reservoir size on water quality in coastal reservoirs during desalinization period using numerical model. Water Supply, 22(5), 5080–5094. doi:10.2166/ws.2022.182.

Shalby, A., Elshemy, M., & Zeidan, B. A. (2020). Assessment of climate change impacts on water quality parameters of Lake Burullus, Egypt. Environmental Science and Pollution Research, 27(26), 32157–32178. doi:10.1007/s11356-019-06105-x.

Wang, N., Chen, Q., Hu, K., Xu, K., Bentley, S. J., & Wang, J. (2023). Morphodynamic modeling of Fourleague Bay in Mississippi River Delta: Sediment fluxes across river-estuary-wetland boundaries. Coastal Engineering, 186, 104399. doi:10.1016/j.coastaleng.2023.104399.

Xu, C., Zhang, J., Bi, X., Xu, Z., He, Y., & Gin, K. Y. H. (2017). Developing an integrated 3D-hydrodynamic and emerging contaminant model for assessing water quality in a Yangtze Estuary Reservoir. Chemosphere, 188, 218–230. doi:10.1016/j.chemosphere.2017.08.121.

Kim, S., Kim, K., & Lee, J. (2023). Real-time WQI Prediction Using AI-based Models. Journal of the Korean Society for Marine Environment & Energy, 26(1), 66–80. doi:10.7846/jkosmee.2023.26.1.66.

Lürling, M., & Mucci, M. (2020). Mitigating eutrophication nuisance: in-lake measures are becoming inevitable in eutrophic waters in the Netherlands. Hydrobiologia, 847(21), 4447–4467. doi:10.1007/s10750-020-04297-9.

Oh, C., Song, Y., Yoon, J.-S., & Jang, J. (2021). A Study on Appropriate Water Quality Management Measures Dependent on a Hydrodynamic Characteristics in Saemangeum Freshening Reservoir. Korea Society of Coastal Disaster Prevention, 8(1), 41–50. doi:10.20481/kscdp.2021.8.1.41.

Choi, H., Kwon, H. I., Yoon, Y. Y., Kim, Y., & Koh, D. C. A preliminary assessment of groundwater chemistry for agricultural water supply in the Mangyeong-Dongjin watershed. Journal of Soil and Groundwater Environment, 26, 65–75. doi:10.7857/JSGE.2021.26.1.065.

Kim, J., Lee, S., Shin, J. Y., Lim, J. H., Na, Y. K., Joo, S., ... & Choi, J. (2018). Effect of Paddy BMPs on Water Quality and Policy Consideration in Saemangeum Watershed. Journal of Wetlands Research, 20(4), 304-313. doi:10.17663/JWR.2018.20.4.304.

MOE. (2024). Ministry of Environment, Seoul, South Korea. Available online: http://www.eariul.go.kr (accessed on December 2024).

MOF. (2024). Ministry of Oceans and Fisheries, Seoul, South Korea. Available online: http://www.meis.go.kr (accessed on December 2024).

KIMST. (2024). Korea Institute of Marine Science & Technology Promotion, Seoul, South Korea. Available online: http://www.kimst.re.kr/ (accessed on December 2024).

KHOA. (2024). Korea Hydrographic and Oceanographic Agency, Seoul, South Korea. Available online: http://www.khoa.go.kr (accessed on December 2024).

Deltares. (2023). 3D-Water Quality: Versatile water quality modelling. Deltares, Delft, Version 1.1 (August 2023). Available online: https://content.oss.deltares.nl/delft3d/D-Water_Quality_User_Manual.pdf (accessed on December 2024).

Deltares. (2024). Delft3D-FLOW, Simulation of Multi-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments. Deltares, Delft, Version 4.05 (August 2024). Available online: https://content.oss.deltares.nl/delft3d4/Delft3D-FLOW_User_Manual.pdf (accessed on December 2024).

Kim, T.-Y., & Yoon, H.-S. (2011). Skill Assessments for Evaluating the Performance of the Hydrodynamic Model. Journal of the Korean Society for Marine Environment & Energy, 14(2), 107–113. doi:10.7846/jkosmee.2011.14.2.107.

Hurley, P. J., Blockley, A., & Rayner, K. (2001). Verification of a prognostic meteorological and air pollution model for year-long predictions in the Kwinana industrial region of Western Australia. Atmospheric Environment, 35(10), 1871–1880. doi:10.1016/S1352-2310(00)00486-6.

D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900. doi:10.13031/2013.23153.

Darwin, C. (1953). Note on hydrodynamics. Mathematical Proceedings of the Cambridge Philosophical Society, 49(2), 342–354. doi:10.1017/S0305004100028449.

Ye, J., & McCorquodale, J. A. (1998). Simulation of Curved Open Channel Flows by 3D Hydrodynamic Model. Journal of Hydraulic Engineering, 124(7), 687–698. doi:10.1061/(asce)0733-9429(1998)124:7(687).

Novak, R. A. (1967). Streamline curvature computing procedures for fluid-flow problems. Journal of Engineering for Gas Turbines and Power, 89(4), 478–490. doi:10.1115/1.3616716.

Constantin, P., Lax, P. D., & Majda, A. (1985). A simple one‐dimensional model for the three‐dimensional vorticity equation. Communications on Pure and Applied Mathematics, 38(6), 715–724. doi:10.1002/cpa.3160380605.

Zhang, J.-M., Khoo, B. C., Teo, C. P., Haja, N., Tham, T. K., Zhong, L., & Lee, H. P. (2013). Passive and Active Methods for Enhancing Water Quality of Service Reservoir. Journal of Hydraulic Engineering, 139(7), 745–753. doi:10.1061/(asce)hy.1943-7900.0000730.

Park, M. O., Lee, Y. W., Park, J. K., Kang, C. S., Kim, S. G., Kim, S. S., & Lee, S. M. (2019). Evaluation of the seawater quality in the coastal area of Korea in 2013–2017. Journal of the Korean Society for Marine Environment & Energy, 22(1), 47-56. doi:10.7846/jkosmee.2019.22.1.47.

Eaton, J. K., & Fessler, J. R. (1994). Preferential concentration of particles by turbulence. International Journal of Multiphase Flow, 20(SUPPL. 1), 169–209. doi:10.1016/0301-9322(94)90072-8.

Ra, K., Kim, J. K., Kim, E. S., Kim, K. T., Lee, J. M., Kim, S. K., ... & Park, E. J. (2013). Evaluation of spatial and temporal variations of water quality in Lake Shihwa and outer Sea by using water quality index in Korea: A case study of influence of tidal power plant operation. Journal of the Korean Society for Marine Environment & Energy, 16(2), 102-114. doi:10.7846/jkosmee.2013.16.2.102.

Coelho, J. P., Flindt, M. R., Jensen, H. S., Lillebø, A. I., & Pardal, M. A. (2004). Phosphorus speciation and availability in intertidal sediments of a temperate estuary: Relation to eutrophication and annual P-fluxes. Estuarine, Coastal and Shelf Science, 61(4), 583–590. doi:10.1016/j.ecss.2004.07.001.

Hwang, S., Jun, S. M., Song, J. H., Kim, K., Kim, H., & Kang, M. S. (2021). Application of the SWAT-EFDC linkage model for assessing water quality management in an Estuarine reservoir separated by levees. Applied Sciences (Switzerland), 11(9), 3911. doi:10.3390/app11093911.

Welch, E. B., & Patmont, C. R. (1980). Lake restoration by dilution: Moses lake, Washington. Water Research, 14(9), 1317–1325. doi:10.1016/0043-1354(80)90192-X.

Koşucu, M. M., Demirel, M. C., Kirca, V. S. O., & Özger, M. (2019). Hydrodynamic and hydrographic modeling of Istanbul Strait. Processes, 7(10), 710. doi:10.3390/pr7100710.

Cole, T. M., & Wells, S. A. (2006). CE-QUAL-W2: A two-dimensional, laterally averaged, Hydrodynamic and Water Quality Model, Version 3.5. Instruction Report EL-06-1, US Army Engineering and Research Development Center, Vicksburg, United States.

Zison, S. W., Mills, W. B., Deimer, D., & Chen, C. W. (1978). Rates Constants and Kinetics in Surface Water Quality Modeling (First Edition). United States Environmental Protection Agency, EPA-600/3-78-105.

Zison, S., Mills, W., Deimer, D., & Chen, C. (1978). Rates, constants, and kinetics formulations in surface water quality modeling. Final Report, May 1976 - Nov. 1978.

Shimoda, Y., & Arhonditsis, G. B. (2016). Phytoplankton functional type modelling: Running before we can walk? A critical evaluation of the current state of knowledge. Ecological Modelling, 320, 29–43. doi:10.1016/j.ecolmodel.2015.08.029.

Di Maggio, J., Fernández, C., Parodi, E. R., Diaz, M. S., & Estrada, V. (2016). Modeling phytoplankton community in reservoirs. A comparison between taxonomic and functional groups-based models. Journal of Environmental Management, 165, 31–52. doi:10.1016/j.jenvman.2015.08.027.

Pennock, J. R. (1985). Chlorophyll distributions in the Delaware estuary: Regulation by light-limitation. Estuarine, Coastal and Shelf Science, 21(5), 711–725. doi:10.1016/0272-7714(85)90068-X.

Olsson, F., Mackay, E. B., Barker, P., Davies, S., Hall, R., Spears, B., Exley, G., Thackeray, S. J., & Jones, I. D. (2022). Can reductions in water residence time be used to disrupt seasonal stratification and control internal loading in a eutrophic monomictic lake? Journal of Environmental Management, 304, 114169. doi:10.1016/j.jenvman.2021.114169.

Li, J., Li, H., Shen, B., & Li, Y. (2011). Effect of non-point source pollution on water quality of the Weihe River. International Journal of Sediment Research, 26(1), 50–61. doi:10.1016/S1001-6279(11)60075-9.

Cesana, B. M. (2018). What p-value must be used as the Statistical Significance Threshold? P<0.005, P<0.01, P<0.05 or no value at all? Biomedical Journal of Scientific & Technical Research, 6(3), 5310–5318. doi:10.26717/bjstr.2018.06.001359.

Kim, S. M., Park, Y. K., Lee, D. J., & Chung, M. (2017). Prediction of water quality change in Saemangeum reservoir by floodgate operation at upstream. Journal of Korea Water Resources Association, 50(6), 373–386. doi:10.3741/jkwra.2017.50.6.373.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-01-015

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Semin Kim

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message