Experimental Investigation on Pervious Recycled Aggregate Concrete Made of Waste Porcelain
Abstract
Doi: 10.28991/CEJ-2024-010-09-08
Full Text: PDF
Keywords
References
Younis, K. H., Jirjees, F. F., Khoshnaw, G., & Ali, B. H. (2019). Experimental study on performance of recycled aggregate concrete: Effect of reactive mineral admixtures. International Journal of Civil Engineering and Technology, 10(1), 2566–2576.
Gesoʇlu, M., Güneyisi, E., Khoshnaw, G., & Ipek, S. (2014). Abrasion and freezing-thawing resistance of pervious concretes containing waste rubbers. Construction and Building Materials, 73, 19–24. doi:10.1016/j.conbuildmat.2014.09.047.
Gesoǧlu, M., Güneyisi, E., Khoshnaw, G., & Ipek, S. (2014). Investigating properties of pervious concretes containing waste tire rubbers. Construction and Building Materials, 63, 206–213. doi:10.1016/j.conbuildmat.2014.04.046.
Guo, L., Guan, Z., Guo, L., Shen, W., Xue, Z., Chen, P., & Li, M. (2020). Effects of recycled aggregate content on pervious concrete performance. Journal of Renewable Materials, 8(12), 1711–1727. doi:10.32604/jrm.2020.013415.
Leon Raj, J., & Chockalingam, T. (2020). Strength and abrasion characteristics of pervious concrete. Road Materials and Pavement Design, 21(8), 2180–2197. doi:10.1080/14680629.2019.1596828.
Kacha, S. A. P. S. (2016). Utilization of waste materials in the production of pervious concrete–A Review. International Journal for Scientific Research & Development, 4(9), 442-449.
Denisiewicz, A., Śliwa, M., Kula, K., & Socha, T. (2019). Experimental investigation of concrete with recycled aggregates for suitability in concrete structures. Applied Sciences (Switzerland), 9(23), 5010. doi:10.3390/app9235010.
Amin, A. A., Younis, K. H., Jirjees, F. F., & Ibrahim, T. K. (2021). Experimental study on mechanical properties of pervious concrete containing recycled aggregate. Civil Engineering and Architecture, 9(6), 1735–1743. doi:10.13189/cea.2021.090607.
Habeeb, M. M., Younis, K. H., Jirjees, F. F., Maruf, S. M., & Ibrahim, T. K. (2022). Behaviour of sustainable slag enriched concrete: Effect of fully replacement of natural coarse aggregate with construction waste. Materials Today: Proceedings, 57, 806–811. doi:10.1016/j.matpr.2022.02.389.
Keshavarz, Z., & Mostofinejad, D. (2019). Porcelain and red ceramic wastes used as replacements for coarse aggregate in concrete. Construction and Building Materials, 195, 218–230. doi:10.1016/j.conbuildmat.2018.11.033.
Tavares, L. M., & Kazmierczak, C. S. (2016). The influence of recycled concrete aggregates in pervious concrete. Revista IBRACON de Estruturas e Materiais, 9(1), 75–89. doi:10.1590/s1983-41952016000100006.
Sai Sindhu, K., & Suresh Babu, T. (2015). Study and Comparison of Mechanical Properties, Durability and Permeability of M15, M20, M25 Grades of Pervious Concrete with Conventional Concrete. International Journal of Applied Research 2015, 1 (10), 676-681.
Fanijo, E. O., Kolawole, J. T., Babafemi, A. J., & Liu, J. (2023). A comprehensive review on the use of recycled concrete aggregate for pavement construction: Properties, performance, and sustainability. Cleaner Materials, 9, 100199. doi:10.1016/j.clema.2023.100199.
Yaba, H. K., Naji, H. S., Younis, K. H., & Ibrahim, T. K. (2021). Compressive and flexural strengths of recycled aggregate concrete: Effect of different contents of metakaolin. Materials Today: Proceedings, 45, 4719–4723. doi:10.1016/j.matpr.2021.01.164.
Théréné, F., Keita, E., Naël-Redolfi, J., Boustingorry, P., Bonafous, L., & Roussel, N. (2020). Water absorption of recycled aggregates: Measurements, influence of temperature and practical consequences. Cement and Concrete Research, 137, 106196. doi:10.1016/j.cemconres.2020.106196.
Niu, H., Tarigh, J., Na, H., Wang, X., Zhang, X., & Hui, C. (2021). Residual compressive and flexural strength of a high strength recycled aggregate concrete. International Journal of Scientific Development and Research, 6(6), 182-195.
Çakir, O. (2014). Experimental analysis of properties of recycled coarse aggregate (RCA) concrete with mineral additives. Construction and Building Materials, 68, 17–25. doi:10.1016/j.conbuildmat.2014.06.032.
Al-Luhybi, A. S. (2017). Studying the Effect of Adding Marble and Porcelain Waste on Mechanical Properties of Concrete Containing Recycled Aggregate. Engineering and Technology Journal, 35(7), 668–674. doi:10.30684/etj.35.7a.1.
Anderson, D. J., Smith, S. T., & Au, F. T. K. (2016). Mechanical properties of concrete utilising waste ceramic as coarse aggregate. Construction and Building Materials, 117, 20–28. doi:10.1016/j.conbuildmat.2016.04.153.
El-Abidi, K. M. A., Mijarsh, M. J. A., & Abas, N. F. (2022). Properties of porcelain influenced concrete. European Journal of Environmental and Civil Engineering, 26(3), 879–890. doi:10.1080/19648189.2019.1684383.
Sua-iam, G., & Jamnam, S. (2023). Influence of calcium carbonate on green self-compacting concrete incorporating porcelain tile waste as coarse aggregate replacement. Case Studies in Construction Materials, 19, 2366. doi:10.1016/j.cscm.2023.e02366.
Alshahwany, R. B., Abdulkareem, O. M., & Shlla, R. D. (2024). Influence of Ceramic Wastes as a Recycled Coarse Aggregate with Different Maximum Sizes on the Concrete. The Open Civil Engineering Journal, 18(1). doi:10.2174/0118741495298085240326062433.
BS EN 197-1. (2019). Cement - Composition, specifications and conformity criteria for common cements. British Standard Institute (BSI), London, United Kingdom.
BS EN 12390-3. (2009). Testing Hardened Concrete Part 3: Compressive Strength of Test Specimens. British Standard Institute (BSI), London, United Kingdom.
BS EN 12390-5. (2009). Testing Hardened Concrete Part 5: Flexural Strength of Test Specimens. British Standard Institute (BSI), London, United Kingdom.
ASTM D5084-03. (2010). Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM International, Pennsylvania, United States. doi:10.1520/D5084-03.
BS EN 12390-6. (2009). Testing Hardened Concrete Part 6: Splitting tensile Strength of Test Specimens. British Standard Institute (BSI), London, United Kingdom.
ACI 544.2R-89. (1999). Measurement of Properties of Fiber Reinforced Concrete. American Concrete Institute (ACI), Michigan, United States.
BS EN 14157. (2017). Natural stone test methods. Determination of the abrasion resistance. British Standard Institute (BSI), London, United Kingdom.
BS EN 12350-2. (2009). Testing fresh concrete Part 2: Slump-test. British Standard Institute (BSI), London, United Kingdom.
Taffese, W. Z. (2018). Suitability Investigation of Recycled Concrete Aggregates for Concrete Production: An Experimental Case Study. Advances in Civil Engineering, 2018, 8368351. doi:10.1155/2018/8368351.
Silva, R. V., de Brito, J., & Dhir, R. K. (2018). Fresh-state performance of recycled aggregate concrete: A review. Construction and Building Materials, 178, 19–31. doi:10.1016/j.conbuildmat.2018.05.149.
Silva, R. V., De Brito, J., & Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Construction and Building Materials, 65, 201–217. doi:10.1016/j.conbuildmat.2014.04.117.
DOI: 10.28991/CEJ-2024-010-09-08
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 waleed ali hamad
This work is licensed under a Creative Commons Attribution 4.0 International License.