Analysis of Tetrachiral Sandwich Structures at High-Velocity Impact: Influence of the Applied Material and Projectile Core Geometry
Abstract
Doi: 10.28991/CEJ-2024-010-10-017
Full Text: PDF
Keywords
References
Yu, T., & Xue, P. (2022). Utilizing plastic deformation for energy absorption. Introduction to Engineering Plasticity, 293–326. doi:10.1016/b978-0-323-98981-7.00011-7.
Bao, Y., Gao, X., Wu, Y., Sun, M., & Li, G. (2021). Research progress of armor protection materials. Journal of Physics: Conference Series, 1855(1), 12035. doi:10.1088/1742-6596/1855/1/012035.
Rao, C. L., Narayanamurthy, V., & Simha, K. R. Y. (2016). Ballistic Impact. Applied Impact Mechanics, 269–312. doi:10.1002/9781119241829.ch9.
Li, S., Jin, F., Zhang, W., & Meng, X. (2016). Research of hail impact on aircraft wheel door with lattice hybrid structure. Journal of Physics: Conference Series, 744(1), 12102. doi:10.1088/1742-6596/744/1/012102.
Borsellino, C., Calabrese, L., & Valenza, A. (2004). Experimental and numerical evaluation of sandwich composite structures. Composites Science and Technology, 64(10–11), 1709–1715. doi:10.1016/j.compscitech.2004.01.003.
Ma, Q., Rejab, M. R. M., Song, Y., Zhang, X., Hanon, M. M., Abdullah, M. H., & Kumar, A. P. (2024). Effect of infill pattern of polylactide acid (PLA) 3D-printed integral sandwich panels under ballistic impact loading. Materials Today Communications, 38, 107626. doi:10.1016/j.mtcomm.2023.107626.
Khalaf, W. A., & Hamzah, M. N. (2024). Experimental and numerical studies of ballistic resistance of hybrid sandwich composite body armor. Open Engineering, 14(1). doi:10.1515/eng-2022-0543.
Alam, S., & Aboagye, P. (2024). Numerical Modeling on Ballistic Impact Analysis of the Segmented Sandwich Composite Armor System. Applied Mechanics, 5(2), 340–361. doi:10.3390/applmech5020020.
Sadikbasha, S., & Pandurangan, V. (2023). High velocity impact response of sandwich structures with auxetic tetrachiral cores: Analytical model, finite element simulations and experiments. Composite Structures, 317, 117064. doi:10.1016/j.compstruct.2023.117064.
Qin, S., Deng, X., Yang, F., & Lu, Q. (2023). Energy absorption characteristics and negative Poisson’s ratio effect of axisymmetric tetrachiral honeycombs under in-plane impact. Composite Structures, 323, 117493. doi:10.1016/j.compstruct.2023.117493.
Atilla Yolcu, D., & Okutan Baba, B. (2024). Experimental investigation on impact behavior of curved sandwich composites with chiral auxetic core. Composite Structures, 329, 117749. doi:10.1016/j.compstruct.2023.117749.
Pham, D. B., & Huang, S. C. (2023). A novel bio-inspired hierarchical tetrachiral structure that enhances energy absorption capacity. Journal of Mechanical Science and Technology, 37(7), 3229–3237. doi:10.1007/s12206-023-2202-y.
Mohammad, Z., Gupta, P. K., & Baqi, A. (2020). Experimental and numerical investigations on the behavior of thin metallic plate targets subjected to ballistic impact. International Journal of Impact Engineering, 146, 103717. doi:10.1016/j.ijimpeng.2020.103717.
Prall, D., & Lakes, R. S. (1997). Properties of a chiral honeycomb with a Poisson’s ratio of - 1. International Journal of Mechanical Sciences, 39(3), 305–307. doi:10.1016/s0020-7403(96)00025-2.
Salihu, S. A., Suleiman, Y. I., Eyinavi, A. I., & Usman, A. (2019). Classification, Properties and Applications of titanium and its alloys used in aerospace, automotive, biomedical and marine industry-A Review. International Journal of Precious Engineering Research and Applications, 4(3), 23-36.
Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., De Smet, P., Haszler, A., & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 280(1), 37–49. doi:10.1016/s0921-5093(99)00653-x.
Panda, A., Sahoo, A. K., Kumar, R., & Das, R. K. (2020). A review on machinability aspects for AISI 52100 bearing steel. Materials Today: Proceedings, 23, 617–621. doi:10.1016/j.matpr.2019.05.422.
Iqbal, M. A., Senthil, K., Sharma, P., & Gupta, N. K. (2016). An investigation of the constitutive behavior of Armox 500T steel and armor piercing incendiary projectile material. International Journal of Impact Engineering, 96, 146–164. doi:10.1016/j.ijimpeng.2016.05.017.
Yeter, E. (2019). Damage resistance investigation of Armox 500T and Aluminum 7075-T6 plates subjected to drop-weight and ballistic impact loads. Sakarya University Journal of Science, 23(6), 1080–1095. doi:10.16984/saufenbilder.517128.
Wang, X., & Shi, J. (2013). Validation of Johnson-Cook plasticity and damage model using impact experiment. International Journal of Impact Engineering, 60, 67–75. doi:10.1016/j.ijimpeng.2013.04.010.
Dong, Y., Ren, Y., Fan, S., Wang, Y., & Zhao, S. (2020). Investigation of notch-induced precise splitting of different bar materials under high-speed load. Materials, 13(11), 2461. doi:10.3390/MA13112461.
Wu, B., Lin, J., Xie, A., Wang, N., Zhang, G., Zhang, J., & Dai, H. (2022). Flocking Bird Strikes on Engine Fan Blades and Their Effect on Rotor System: A Numerical Simulation. Aerospace, 9(2), 90. doi:10.3390/aerospace9020090.
Ansori, D. T. A., Prabowo, A. R., Muttaqie, T., Muhayat, N., Laksono, F. B., Tjahjana, D. D. D. P., Prasetyo, A., & Kuswardi, Y. (2022). Investigation of Honeycomb Sandwich Panel Structure using Aluminum Alloy (AL6XN) Material under Blast Loading. Civil Engineering Journal (Iran), 8(5), 1046–1068. doi:10.28991/CEJ-2022-08-05-014.
Nurcholis, A., Prabowo, A. R., Yaningsih, I., Muttaqie, T., Nubli, H., Huda, N., & Fajri, A. (2023). Idealized fire-structures interaction on ship and offshore building members: A benchmark study using explicit-dynamic FE approach. Procedia Structural Integrity, 48, 33–40. doi:10.1016/j.prostr.2023.07.107.
Pratama, A. A., Prabowo, A. R., Muttaqie, T., Muhayat, N., Ridwan, R., Cao, B., & Laksono, F. B. (2023). Hollow tube structures subjected to compressive loading: implementation of the pitting corrosion effect in nonlinear FE analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(3), 143. doi:10.1007/s40430-023-04067-3.
Do, Q. T., Xuan-Phuong, D., Tra, T. H., Tuyen, V. Van, Prabowo, A. R., & Hung, T. D. (2024). Parametric study of side collision-induced denting failures on the ultimate strength of a handy-size containership under vertical bending. Ocean Engineering, 309, 118534. doi:10.1016/j.oceaneng.2024.118534.
Wiranto, I. B., Saraswati, S. O., Alfikri, I. R., Chairunnisa, C., Megawanto, F. C., Adhynugraha, M. I., & Majid, N. C. (2024). Effect of Boundary Condition on Numerical Study of UAV Composite Skin Panels Under Dynamic Impact Loading. Mekanika: Majalah Ilmiah Mekanika, 23(1), 22. doi:10.20961/mekanika.v23i1.77875.
Nurcholis, A., Prabowo, A. R., Muhayat, N., Yaningsih, I., Tjahjana, D. D. D. P., Jurkovič, M., Sohn, J. M., Adiputra, R., Hanif, M. I., & Ridwan, R. (2024). Performances of the sandwich panel structures under fire accident due to hydrogen leaks: Consideration of structural design and environment factor using FE analysis. Curved and Layered Structures, 11(1), 20240005. doi:10.1515/cls-2024-0005.
Naufal, A. M., Prabowo, A. R., Muttaqie, T., Hidayat, A., Purwono, J., Adiputra, R., Akbar, H. I., & Smaradhana, D. F. (2024). Characterization of sandwich materials – Nomex-Aramid carbon fiber performances under mechanical loadings: Nonlinear FE and convergence studies. Reviews on Advanced Materials Science, 63(1), 20230177. doi:10.1515/rams-2023-0177.
Sahraei, A., Pezeshky, P., Sasibut, S., Rong, F., & Mohareb, M. (2022). Finite element formulation for the dynamic analysis of shear deformable thin-walled beams. Thin-Walled Structures, 173, 108989. doi:10.1016/j.tws.2022.108989.
Prabowo, A. R., Ridwan, R., Braun, M., Song, S., Ehlers, S., Firdaus, N., & Adiputra, R. (2023). Comparative study of shell element formulations as NLFE parameters to forecast structural crashworthiness. Curved and Layered Structures, 10(1), 20220217. doi:10.1515/cls-2022-0217.
Prabowo, A. R., Ridwan, R., Tuswan, T., Smaradhana, D. F., Cao, B., & Baek, S. J. (2024). Crushing resistance on the metal-based plate under impact loading: A systematic study on the indenter radius influence in grounding accident. Applications in Engineering Science, 18, 100177. doi:10.1016/j.apples.2024.100177.
Prabowo, A. R., Cahyono, S. I., & Sohn, J. M. (2019). Crashworthiness assessment of thin-walled double bottom tanker: A variety of ship grounding incidents. Theoretical and Applied Mechanics Letters, 9(5), 320–327. doi:10.1016/j.taml.2019.05.002.
Främby, J., Fagerström, M., & Karlsson, J. (2020). An adaptive shell element for explicit dynamic analysis of failure in laminated composites Part 1: Adaptive kinematics and numerical implementation. Engineering Fracture Mechanics, 240, 107288. doi:10.1016/j.engfracmech.2020.107288.
Del Priore, E., & Lampani, L. (2024). A methodology for applying isogeometric inverse finite element method to the shape sensing of stiffened thin-shell structures. Thin-Walled Structures, 199, 111837. doi:10.1016/j.tws.2024.111837.
Ridwan, R., Sudarno, S., Nubli, H., Chasan, A., Istanto, I., & Pratama, P. S. (2023). Numerical Analysis of Openings in Stiffeners under Impact Loading: Investigating Structural Response and Failure Behavior. Mekanika: Majalah Ilmiah Mekanika, 22(2), 115. doi:10.20961/mekanika.v22i2.76774.
Carvalho, H., Ridwan, R., Sudarno, S., Prabowo, A. R., Bae, D. M., & Huda, N. (2023). Failure criteria in crashworthiness analysis of ship collision and grounding using FEA: Milestone and development. Mekanika: Majalah Ilmiah Mekanika, 22(1), 30. doi:10.20961/mekanika.v22i1.70959.
Kim, S. J., Taimuri, G., Kujala, P., Conti, F., Le Sourne, H., Pineau, J. P., Looten, T., Bae, H., Mujeeb-Ahmed, M. P., Vassalos, D., Kaydihan, L., & Hirdaris, S. (2022). Comparison of numerical approaches for structural response analysis of passenger ships in collisions and groundings. Marine Structures, 81, 103125. doi:10.1016/j.marstruc.2021.103125.
Prabowo, A. R., Muttaqie, T., Sohn, J. M., & Bae, D. M. (2018). Nonlinear analysis of inter-island roro under impact: Effects of selected collision’s parameters on the crashworthy double-side structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(5), 248. doi:10.1007/s40430-018-1169-6.
DOI: 10.28991/CEJ-2024-010-10-017
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Sultan Maulana, Aditya Rio Prabowo, Wibowo Wibowo, Quang Thang Do, Teguh Muttaqie, Nurul Muhayat, Siti Nurlita Fitri
This work is licensed under a Creative Commons Attribution 4.0 International License.