Analysis of Tetrachiral Sandwich Structures at High-Velocity Impact: Influence of the Applied Material and Projectile Core Geometry

Sultan Maulana, Aditya Rio Prabowo, Wibowo Wibowo, Quang Thang Do, Teguh Muttaqie, Nurul Muhayat, Siti Nurlita Fitri

Abstract


This research involved ballistic impact analysis on a tetrachiral sandwich structure in which the shapes of the circular nodes in the tetrachiral core are modified into polygonal shapes, namely a square, hexagon, and octagon. The objectives of this study were to observe the effect of a modified sandwich tetrachiral structure core, investigate the effect of the projectile geometry, and calculate the material performance of the structure. This research was conducted using numerical analysis utilizing the finite element method. The simulation methodology was validated through a benchmarking study, the results of which showed an error below 6%. The findings show that the material with the best performance was Armox 500T, at 5033 J. The most difficult projectile to withstand was conical, followed by ogive, hemispherical, and blunt. The results of the core modification on the tetrachiral sandwich structure show that the octagonal core had better energy absorption, by 2.8%, compared to the circular core. Modifying the node geometry in the tetrachiral core and then analyzing it with stress and strain contours are the novel aspects of this research.

 

Doi: 10.28991/CEJ-2024-010-10-017

Full Text: PDF


Keywords


Sandwich Structures; Tetrachiral Core; Absorbed Energy; Military Armor; High-Velocity Impact.

References


Yu, T., & Xue, P. (2022). Utilizing plastic deformation for energy absorption. Introduction to Engineering Plasticity, 293–326. doi:10.1016/b978-0-323-98981-7.00011-7.

Bao, Y., Gao, X., Wu, Y., Sun, M., & Li, G. (2021). Research progress of armor protection materials. Journal of Physics: Conference Series, 1855(1), 12035. doi:10.1088/1742-6596/1855/1/012035.

Rao, C. L., Narayanamurthy, V., & Simha, K. R. Y. (2016). Ballistic Impact. Applied Impact Mechanics, 269–312. doi:10.1002/9781119241829.ch9.

Li, S., Jin, F., Zhang, W., & Meng, X. (2016). Research of hail impact on aircraft wheel door with lattice hybrid structure. Journal of Physics: Conference Series, 744(1), 12102. doi:10.1088/1742-6596/744/1/012102.

Borsellino, C., Calabrese, L., & Valenza, A. (2004). Experimental and numerical evaluation of sandwich composite structures. Composites Science and Technology, 64(10–11), 1709–1715. doi:10.1016/j.compscitech.2004.01.003.

Ma, Q., Rejab, M. R. M., Song, Y., Zhang, X., Hanon, M. M., Abdullah, M. H., & Kumar, A. P. (2024). Effect of infill pattern of polylactide acid (PLA) 3D-printed integral sandwich panels under ballistic impact loading. Materials Today Communications, 38, 107626. doi:10.1016/j.mtcomm.2023.107626.

Khalaf, W. A., & Hamzah, M. N. (2024). Experimental and numerical studies of ballistic resistance of hybrid sandwich composite body armor. Open Engineering, 14(1). doi:10.1515/eng-2022-0543.

Alam, S., & Aboagye, P. (2024). Numerical Modeling on Ballistic Impact Analysis of the Segmented Sandwich Composite Armor System. Applied Mechanics, 5(2), 340–361. doi:10.3390/applmech5020020.

Sadikbasha, S., & Pandurangan, V. (2023). High velocity impact response of sandwich structures with auxetic tetrachiral cores: Analytical model, finite element simulations and experiments. Composite Structures, 317, 117064. doi:10.1016/j.compstruct.2023.117064.

Qin, S., Deng, X., Yang, F., & Lu, Q. (2023). Energy absorption characteristics and negative Poisson’s ratio effect of axisymmetric tetrachiral honeycombs under in-plane impact. Composite Structures, 323, 117493. doi:10.1016/j.compstruct.2023.117493.

Atilla Yolcu, D., & Okutan Baba, B. (2024). Experimental investigation on impact behavior of curved sandwich composites with chiral auxetic core. Composite Structures, 329, 117749. doi:10.1016/j.compstruct.2023.117749.

Pham, D. B., & Huang, S. C. (2023). A novel bio-inspired hierarchical tetrachiral structure that enhances energy absorption capacity. Journal of Mechanical Science and Technology, 37(7), 3229–3237. doi:10.1007/s12206-023-2202-y.

Mohammad, Z., Gupta, P. K., & Baqi, A. (2020). Experimental and numerical investigations on the behavior of thin metallic plate targets subjected to ballistic impact. International Journal of Impact Engineering, 146, 103717. doi:10.1016/j.ijimpeng.2020.103717.

Prall, D., & Lakes, R. S. (1997). Properties of a chiral honeycomb with a Poisson’s ratio of - 1. International Journal of Mechanical Sciences, 39(3), 305–307. doi:10.1016/s0020-7403(96)00025-2.

Salihu, S. A., Suleiman, Y. I., Eyinavi, A. I., & Usman, A. (2019). Classification, Properties and Applications of titanium and its alloys used in aerospace, automotive, biomedical and marine industry-A Review. International Journal of Precious Engineering Research and Applications, 4(3), 23-36.

Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., De Smet, P., Haszler, A., & Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 280(1), 37–49. doi:10.1016/s0921-5093(99)00653-x.

Panda, A., Sahoo, A. K., Kumar, R., & Das, R. K. (2020). A review on machinability aspects for AISI 52100 bearing steel. Materials Today: Proceedings, 23, 617–621. doi:10.1016/j.matpr.2019.05.422.

Iqbal, M. A., Senthil, K., Sharma, P., & Gupta, N. K. (2016). An investigation of the constitutive behavior of Armox 500T steel and armor piercing incendiary projectile material. International Journal of Impact Engineering, 96, 146–164. doi:10.1016/j.ijimpeng.2016.05.017.

Yeter, E. (2019). Damage resistance investigation of Armox 500T and Aluminum 7075-T6 plates subjected to drop-weight and ballistic impact loads. Sakarya University Journal of Science, 23(6), 1080–1095. doi:10.16984/saufenbilder.517128.

Wang, X., & Shi, J. (2013). Validation of Johnson-Cook plasticity and damage model using impact experiment. International Journal of Impact Engineering, 60, 67–75. doi:10.1016/j.ijimpeng.2013.04.010.

Dong, Y., Ren, Y., Fan, S., Wang, Y., & Zhao, S. (2020). Investigation of notch-induced precise splitting of different bar materials under high-speed load. Materials, 13(11), 2461. doi:10.3390/MA13112461.

Wu, B., Lin, J., Xie, A., Wang, N., Zhang, G., Zhang, J., & Dai, H. (2022). Flocking Bird Strikes on Engine Fan Blades and Their Effect on Rotor System: A Numerical Simulation. Aerospace, 9(2), 90. doi:10.3390/aerospace9020090.

Ansori, D. T. A., Prabowo, A. R., Muttaqie, T., Muhayat, N., Laksono, F. B., Tjahjana, D. D. D. P., Prasetyo, A., & Kuswardi, Y. (2022). Investigation of Honeycomb Sandwich Panel Structure using Aluminum Alloy (AL6XN) Material under Blast Loading. Civil Engineering Journal (Iran), 8(5), 1046–1068. doi:10.28991/CEJ-2022-08-05-014.

Nurcholis, A., Prabowo, A. R., Yaningsih, I., Muttaqie, T., Nubli, H., Huda, N., & Fajri, A. (2023). Idealized fire-structures interaction on ship and offshore building members: A benchmark study using explicit-dynamic FE approach. Procedia Structural Integrity, 48, 33–40. doi:10.1016/j.prostr.2023.07.107.

Pratama, A. A., Prabowo, A. R., Muttaqie, T., Muhayat, N., Ridwan, R., Cao, B., & Laksono, F. B. (2023). Hollow tube structures subjected to compressive loading: implementation of the pitting corrosion effect in nonlinear FE analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(3), 143. doi:10.1007/s40430-023-04067-3.

Do, Q. T., Xuan-Phuong, D., Tra, T. H., Tuyen, V. Van, Prabowo, A. R., & Hung, T. D. (2024). Parametric study of side collision-induced denting failures on the ultimate strength of a handy-size containership under vertical bending. Ocean Engineering, 309, 118534. doi:10.1016/j.oceaneng.2024.118534.

Wiranto, I. B., Saraswati, S. O., Alfikri, I. R., Chairunnisa, C., Megawanto, F. C., Adhynugraha, M. I., & Majid, N. C. (2024). Effect of Boundary Condition on Numerical Study of UAV Composite Skin Panels Under Dynamic Impact Loading. Mekanika: Majalah Ilmiah Mekanika, 23(1), 22. doi:10.20961/mekanika.v23i1.77875.

Nurcholis, A., Prabowo, A. R., Muhayat, N., Yaningsih, I., Tjahjana, D. D. D. P., Jurkovič, M., Sohn, J. M., Adiputra, R., Hanif, M. I., & Ridwan, R. (2024). Performances of the sandwich panel structures under fire accident due to hydrogen leaks: Consideration of structural design and environment factor using FE analysis. Curved and Layered Structures, 11(1), 20240005. doi:10.1515/cls-2024-0005.

Naufal, A. M., Prabowo, A. R., Muttaqie, T., Hidayat, A., Purwono, J., Adiputra, R., Akbar, H. I., & Smaradhana, D. F. (2024). Characterization of sandwich materials – Nomex-Aramid carbon fiber performances under mechanical loadings: Nonlinear FE and convergence studies. Reviews on Advanced Materials Science, 63(1), 20230177. doi:10.1515/rams-2023-0177.

Sahraei, A., Pezeshky, P., Sasibut, S., Rong, F., & Mohareb, M. (2022). Finite element formulation for the dynamic analysis of shear deformable thin-walled beams. Thin-Walled Structures, 173, 108989. doi:10.1016/j.tws.2022.108989.

Prabowo, A. R., Ridwan, R., Braun, M., Song, S., Ehlers, S., Firdaus, N., & Adiputra, R. (2023). Comparative study of shell element formulations as NLFE parameters to forecast structural crashworthiness. Curved and Layered Structures, 10(1), 20220217. doi:10.1515/cls-2022-0217.

Prabowo, A. R., Ridwan, R., Tuswan, T., Smaradhana, D. F., Cao, B., & Baek, S. J. (2024). Crushing resistance on the metal-based plate under impact loading: A systematic study on the indenter radius influence in grounding accident. Applications in Engineering Science, 18, 100177. doi:10.1016/j.apples.2024.100177.

Prabowo, A. R., Cahyono, S. I., & Sohn, J. M. (2019). Crashworthiness assessment of thin-walled double bottom tanker: A variety of ship grounding incidents. Theoretical and Applied Mechanics Letters, 9(5), 320–327. doi:10.1016/j.taml.2019.05.002.

Främby, J., Fagerström, M., & Karlsson, J. (2020). An adaptive shell element for explicit dynamic analysis of failure in laminated composites Part 1: Adaptive kinematics and numerical implementation. Engineering Fracture Mechanics, 240, 107288. doi:10.1016/j.engfracmech.2020.107288.

Del Priore, E., & Lampani, L. (2024). A methodology for applying isogeometric inverse finite element method to the shape sensing of stiffened thin-shell structures. Thin-Walled Structures, 199, 111837. doi:10.1016/j.tws.2024.111837.

Ridwan, R., Sudarno, S., Nubli, H., Chasan, A., Istanto, I., & Pratama, P. S. (2023). Numerical Analysis of Openings in Stiffeners under Impact Loading: Investigating Structural Response and Failure Behavior. Mekanika: Majalah Ilmiah Mekanika, 22(2), 115. doi:10.20961/mekanika.v22i2.76774.

Carvalho, H., Ridwan, R., Sudarno, S., Prabowo, A. R., Bae, D. M., & Huda, N. (2023). Failure criteria in crashworthiness analysis of ship collision and grounding using FEA: Milestone and development. Mekanika: Majalah Ilmiah Mekanika, 22(1), 30. doi:10.20961/mekanika.v22i1.70959.

Kim, S. J., Taimuri, G., Kujala, P., Conti, F., Le Sourne, H., Pineau, J. P., Looten, T., Bae, H., Mujeeb-Ahmed, M. P., Vassalos, D., Kaydihan, L., & Hirdaris, S. (2022). Comparison of numerical approaches for structural response analysis of passenger ships in collisions and groundings. Marine Structures, 81, 103125. doi:10.1016/j.marstruc.2021.103125.

Prabowo, A. R., Muttaqie, T., Sohn, J. M., & Bae, D. M. (2018). Nonlinear analysis of inter-island roro under impact: Effects of selected collision’s parameters on the crashworthy double-side structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(5), 248. doi:10.1007/s40430-018-1169-6.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-10-017

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Sultan Maulana, Aditya Rio Prabowo, Wibowo Wibowo, Quang Thang Do, Teguh Muttaqie, Nurul Muhayat, Siti Nurlita Fitri

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message