On the Use of a Confined Sand Cell to Dampen Induced Machine Vibration in a Stabilized Clay Numerical Study
Abstract
Doi: 10.28991/CEJ-2025-011-01-018
Full Text: PDF
Keywords
References
Azzam, W. R. (2014). Seismic response of bucket foundation and structure under earthquake loading. Electronic Journal of Geotechnical Engineering, 19, 1477-1489.
Azzam, W. R. (2015). Utilization of the confined cell for improving the machine foundation behavior-numerical study. Journal of GeoEngineering, 10(1), 17–23. doi:10.6310/jog.2015.10(1).3.
Khalil, M. M. (2023). Dynamic Response of Machine Foundations Supported on Rigid Inclusions. Proceedings of the 4th International Conference on Civil Engineering Fundamentals and Applications (ICCEFA 2023), Lisbon, Portugal. doi:10.11159/iccefa23.112.
Liu, L., Zhao, J., Liu, X., & Lv, S. (2023). Dynamic characteristics and reinforcement mechanism of silty soil improved by regenerated fiber polymer. Scientific Reports, 13(1), 1–13. doi:10.1038/s41598-023-45281-2.
Ekal, S. A., & H. AbidAwn, S. (2024). A Study of the Effect of Reinforcement Layers on the Performance of Shallow Footing Under Machine Foundation Loads. Bilad Alrafidain Journal for Engineering Science and Technology, 3(2), 73–84. doi:10.56990/bajest/2024.030207.
Tang, X., & Chen, P. (2024). Combined Earthquake‐Wave Effects on the Dynamic Response of Long‐Span Cable‐Stayed Bridges. Advances in Civil Engineering, 6109335. doi:10.1155/2024/6109335.
Kennedy, C. (2024). The Effect of Dynamic Response Characteristics in Different Confining Pressures of Damping Ratio and Shear Modulus of Sandy Soil. Research Square (Preprint), 1-21. doi:10.21203/rs.3.rs-4436233/v1.
Akpan, W. A., Orazulume, C. M., & Nyaudo, G. E. I. Dynamic Response Studies of Machine Tools Foundation: Critical Analytic Models Versus ANN. International Journal of Research in Engineering and Science (IJRES), 12(11), 1-17.
Bazoobandi, S., Shamekhi Amiri, M., & Keramati, M. (2024). Laboratory Evaluation of Vibration Isolation of Dynamic Loads Caused by Machine Foundations by Surface Trenches. Shock and Vibration, 9215081, 1–16. doi:10.1155/2024/9215081.
Likitlersuang, S., Chheng, C., Surarak, C., & Balasubramaniam, A. (2018). Strength and stiffness parameters of Bangkok clays for finite element analysis. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 49(2), 150-156.
Bentley Systems. (2020). PLAXIS 3D - Tutorial Manual. Bentley Systems, Pennsylvania, United States.
Allawi, A. A., & S. Mohammed, Q. (2022). Numerical analysis of a concrete foundation under a combination of a dynamic and a seismic load. Journal of Engineering, 28(2), 18–39. doi:10.31026/j.eng.2022.02.02.
Basha, A., Azzam, W., & Elsiragy, M. (2024). Utilization of Sand Cushion for Stabilization of Peat Layer Considering Dynamic Response of Compaction. Civil Engineering Journal (Iran), 10(4), 1182–1195. doi:10.28991/CEJ-2024-010-04-011.
Won, M. S., & Langcuyan, C. P. (2020). A 3D numerical analysis of the compaction effects on the behavior of panel-type MSE walls. Open Geosciences, 12(1), 1704–1724. doi:10.1515/geo-2020-0192.
Mirmoradi, S. H., & Ehrlich, M. (2018). Numerical simulation of compaction-induced stress for the analysis of RS walls under working conditions. Geotextiles and Geomembranes, 46(3), 354–365. doi:10.1016/j.geotexmem.2018.01.006.
Cui, K., Défossez, P., & Richard, G. (2007). A new approach for modelling vertical stress distribution at the soil/tyre interface to predict the compaction of cultivated soils by using the PLAXIS code. Soil and Tillage Research, 95(1–2), 277–287. doi:10.1016/j.still.2007.01.010.
Mirmoradi, S. H., & Ehrlich, M. (2014). Modeling of the compaction-induced stresses in numerical analyses of GRS walls. International Journal of Computational Methods, 11(2), 1342002. doi:10.1142/S0219876213420024.
Woods, R. D. (1968). Screening of Surface Wave in Soils. Journal of the Soil Mechanics and Foundations Division, 94(4), 951–979. doi:10.1061/jsfeaq.0001180.
Aminfar, M. H., Azar, B. F., Ebadi, H., & Ahmadi, H. (2009). Change of pore water pressure inside the foundation of Alavian earthfill dam, Iran: A comparison between observed and predicted values. Journal of Applied Sciences, 9(8), 1489–1495. doi:10.3923/jas.2009.1489.1495.
Finno, R. J., & Zapata-Medina, D. G. (2014). Effects of Construction-Induced Stresses on Dynamic Soil Parameters of Bootlegger Cove Clays. Journal of Geotechnical and Geoenvironmental Engineering, 140(4), 1–12. doi:10.1061/(asce)gt.1943-5606.0001072.
Akan, R., & Sert, S. (2021). Investigation of the Consolidation Behavior of Soft Soil Improved with Vertical Drains by Finite Element Method. International Journal of Engineering and Applied Sciences, 13(3), 93–105. doi:10.24107/ijeas.1002115.
DOI: 10.28991/CEJ-2025-011-01-018
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Engy Kassem, Waseim Azzam, Mohamed Elsiragy

This work is licensed under a Creative Commons Attribution 4.0 International License.