Comparative Study of UPV and IE Results on Concrete Cores from Existing Structures
Abstract
Doi: 10.28991/CEJ-2024-010-09-03
Full Text: PDF
Keywords
References
ASTM C597. (2016). Standard Test Method for Pulse Velocity Through Concrete. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
Panzera, T. H., Christoforo, A. L., de Paiva Cota, F., Ribeiro Borges, P. H., & Bowen, C. R. (2011). Ultrasonic Pulse Velocity Evaluation of Cementitious Materials. Advances in Composite Materials - Analysis of Natural and Man-Made Materials. Intechopen, London, United Kingdom. doi:10.5772/17167.
ASTM-E1876-22. (2000). Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
Hobbs, B., & Tchoketch Kebir, M. (2007). Non-destructive testing techniques for the forensic engineering investigation of reinforced concrete buildings. Forensic Science International, 167(2–3), 167–172. doi:10.1016/j.forsciint.2006.06.065.
Logothetis, L. (1979). A contribution to the in-situ assessment of concrete strength by means of combined non-destructive methods. Ph.D. Dissertation, National Technical University, Athens, Greece. doi:10.12681/eadd/2558. (in Greek)
Trezos, K., Papakyriakopoulos, P., & Spanos, C. (1993). Calibration of the Rebound Hammer and Pulse Velocity Methods through in situ concrete cores and standard cube specimens. Technical Chamber of Greece, Agrinio, Greece.
Turgut, P. (2004). Evaluation of the ultrasonic pulse velocity data coming on the field. Fourth International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurised Components, 573–578.
Trtnik, G., Kavčič, F., & Turk, G. (2009). Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics, 49(1), 53–60. doi:10.1016/j.ultras.2008.05.001.
Qasrawi, H. Y. (2000). Concrete strength by combined nondestructive methods simply and reliably predicted. Cement and Concrete Research, 30(5), 739–746. doi:10.1016/S0008-8846(00)00226-X.
Kheder, G. F. (1999). Two stage procedure for assessment of in situ concrete strength using combined non-destructive testing. Materials and Structures/Materiaux et Constructions, 32(6), 410–417. doi:10.1007/bf02482712.
Nash’t, I. H., Saeed, H. A., & Sadoon, A. A. (2005). Finding an Unified Relationship between Crushing Strength of Concrete and Non-destructive Tests. 3rd MENDT - Middle East Nondestructive Testing Conference & Exhibition, 27-30 November, 7.
Siorikis, V. G., Antonopoulos, C. P., Pelekis, P., Christovasili, K., & Hatzigeorgiou, G. D. (2020). Numerical and experimental evaluation of sonic resonance against ultrasonic pulse velocity and compression tests on concrete core samples. Vibroengineering Procedia, 30, 168–173. doi:10.21595/vp.2020.21328.
Medina, R., & Bayón, A. (2010). Elastic constants of a plate from impact-echo resonance and Rayleigh wave velocity. Journal of Sound and Vibration, 329(11), 2114–2126. doi:10.1016/j.jsv.2009.12.026.
Nieves, F. J., Gascón, F., & Bayón, A. (2000). Precise and direct determination of the elastic constants of a cylinder with a length equal to its diameter. Review of Scientific Instruments, 71(6), 2433–2439. doi:10.1063/1.1150632.
Nieves, F. J., Gascón, F., & Bayón, A. (2003). Measurement of the dynamic elastic constants of short isotropic cylinders. Journal of Sound and Vibration, 265(5), 917–933. doi:10.1016/S0022-460X(02)01563-8.
Sansalone, M. (1997). Impact-echo: The complete story. ACI Structural Journal, 94(6), 777–786. doi:10.14359/9737.
Lee, K.-M., Kim, D.-S., & Kim, J.-S. (1997). Determination of dynamic Young’s modulus of concrete at early ages by impact resonance test. KSCE Journal of Civil Engineering, 1(1), 11–18. doi:10.1007/bf02830459.
ASTM C215. (2008). Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete Specimens. American Society for Testing and Materials (ASTM), Pennsylvania, United States. doi:10.1520/C0215-14.2.
Pandum, J., Hashimoto, K., Sugiyama, T., & Yodsudjai, W. (2024). Impact-Echo for Crack Detection in Concrete with Artificial Intelligence based on Supervised Deep Learning. e-Journal of Nondestructive Testing, 29(6), 1-12. doi:10.58286/29925.
Malone, C., Sun, H., & Zhu, J. (2023). Nonlinear Impact-Echo Test for Quantitative Evaluation of ASR Damage in Concrete. Journal of Nondestructive Evaluation, 42(4), 93. doi:10.1007/s10921-023-01003-2.
Schubert, F., & Köhler, B. (2008). Ten lectures on impact-echo. Journal of Nondestructive Evaluation, 27(1–3), 5–21. doi:10.1007/s10921-008-0036-2.
Prakash, S. (1981). Soil Dynamics. McGraw-Hill, New York, United States.
Dethof, F., & Keßler, S. (2024). Explaining impact echo geometry effects using modal analysis theory and numerical simulations. NDT and E International, 143. doi:10.1016/j.ndteint.2023.103035.
ASTM C1383-15. (2022). Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method. American Society for Testing and Materials (ASTM), Pennsylvania, United States.
LNG. F. (1920). A Treatise on the Mathematical Theory of Elasticity. Nature 105, 511–512. doi:10.1038/105511a0.
Kolluru, S. V., Popovics, J. S., & Shah, S. P. (2000). Determining elastic properties of concrete using vibrational resonance frequencies of standard test cylinders. Cement, Concrete and Aggregates, 22(2), 81–89. doi:10.1520/cca10467j.
Yao, F., Zhuang, J., & Abulikemu, A. (2022). Shape coefficient of impact-echo for small-size short cylinder/circular tube structures. Materialpruefung/Materials Testing, 64(4), 574–583. doi:10.1515/mt-2021-2043.
Siorikis, V. G., Antonopoulos, C. P., Pelekis P., Hatzigeorgiou, G. D. (2022). Shape correction factors for impact-echo method on short cylinders-A numerical and experimental study. 13th HSTAM International Congress on Mechanics (24-27 August), Patras, Greece.
Wang, J. J., Chang, T. P., Chen, B. T., & Wang, H. (2012). Determination of Poissons ratio of solid circular rods by impact-echo method. Journal of Sound and Vibration, 331(5), 1059–1067. doi:10.1016/j.jsv.2011.10.030.
Pelekis P., Siorikis, V. G., Antonopoulos, C. P., Hatzigeorgiou, G. D. (2022). Determination of Dynamic Elastic Properties on Short Cylinders Using Impact-Echo Method-A Numerical Study. 13th HSTAM International Congress on Mechanics (24-27 August), Patras, Greece.
Greek Ministry of Environment Physical Planning and Public Works. (1997). Assessment of concrete’s strength classification of existing structures. Accessed. Available online: http://fakisc.weebly.com/uploads/3/2/7/6/3276490/Εγκύκλιος_7_28-3-1997.pdf (accessed on August 2024).
DOI: 10.28991/CEJ-2024-010-09-03
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Panagiotis Pelekis, Vassilis G. Siorikis, Constantinos P. Antonopoulos, George D. Hatzigeorgiou

This work is licensed under a Creative Commons Attribution 4.0 International License.