Shearing Behavior at the Interface of Sand-Structured Surfaces Subjected to Monotonic Axial Loading

Mu’ath I. Abu Qamar, Mohammad F. Tamimi, Ammar A. Alshannaq, Rama O. Al-Masri

Abstract


Enhancing the interface shear strength is crucial in the capacity and design of several geotechnical structures when subjected to static loading. The efficiency of these structures can be enhanced by utilizing innovative designs that allow the mobilization of higher interface shear resistance with bio-inspired-engineered or structured (rough) surfaces when compared to conventional smooth or random rough surfaces of the same geometry (i.e., soil-foundation contact area). Bio-inspired-engineered surfaces used in this study are developed after surfaces with snakeskin-inspired and engineered rough designs that maximize the interface shear resistance in cohesionless and cohesive soils. The frictional behavior and resistance of the bio-inspired-engineered surfaces were experimentally evaluated utilizing a modified interface direct shear apparatus on three locally available sand specimens. Results from tests on smooth surfaces against three different sands mobilized almost the same resistance and soil contraction. The results indicate a behavior significantly influenced by the shape and arrangement of the surface features, accompanied by larger resistance and volume dilation. A parametric study on the characteristics of the structured elements on three sands revealed the isolated impact of elements arrangement, shape, and roughness on the maximum attainable interface strength. The surface element characteristic ratio is found to control the load-transfer mechanism between sand and bio-inspired-engineered structured surfaces.

 

Doi: 10.28991/CEJ-2024-010-10-06

Full Text: PDF


Keywords


Interface Shear Testing; Modified Direct Shear Device; Roughness; Sand-Structure Interface; Bio-Inspired Surfaces.

References


Irsyam, M., & Hryciw, R. D. (1991). Friction and passive resistance in soil reinforced by plane ribbed inclusions. Géotechnique, 41(4), 485–498. doi:10.1680/geot.1991.41.4.485.

Mitchell, J. K., & Villet, W. C. (1987). Reinforcement of earth slopes and embankments. National Cooperative Highway Research Program report, Transportation Research Board, Washington, United States.

Dove, J. E., Frost, J. D., Han, J., & Bachus, R. C. (1997). The influence of geomembrane surface roughness on interface strength. Proceedings of Geosynthetics, 97(1), 863-876.

ardine, R.J., Lehane, B.M., Everton, S.J. (1993). Friction Coefficients for Piles in Sands and Silts. Offshore Site Investigation and Foundation Behaviour. Advances in Underwater Technology, Ocean Science and Offshore Engineering, 28. Springer, Dordrecht, Netherlands. doi:10.1007/978-94-017-2473-9_31.

O’Hara, K. B., & Martinez, A. (2020). Effects of Asperity Height on Monotonic and Cyclic Interface Behavior of Bioinspired Surfaces under Constant Normal Stiffness Conditions. Geo-Congress 2020, 243–252. doi:10.1061/9780784482834.027.

Tehrani, F. S., Han, F., Salgado, R., Prezzi, M., Tovar, R. D., & Castro, A. G. (2016). Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand. Geotechnique, 66(5), 386–400. doi:10.1680/jgeot.15.P.007.

Abu Qamar, M. I., & Suleiman, M. T. (2023). Evaluating the Effects of Asperity Height on Shear Strength of Cohesive Soil-Structure Interface Subjected to Monotonic and Cyclic Axial Loading, 270–280. doi:10.1061/9780784484685.028.

Dove, J. E., & Jarrett, J. B. (2002). Behavior of Dilative Sand Interfaces in a Geotribology Framework. Journal of Geotechnical and Geoenvironmental Engineering, 128(1), 25–37. doi:10.1061/(asce)1090-0241(2002)128:1(25).

Martinez, A., & Frost, J. D. (2017). The influence of surface roughness form on the strength of sand-structure interfaces. Geotechnique Letters, 7(1), 104–111. doi:10.1680/jgele.16.00169.

Uesugi, M., & Kishida, H. (1986). Frictional Resistance at Yield Between Dry Sand and Mild Steel. Soils and Foundations, 26(4), 139–149. doi:10.3208/sandf1972.26.4_139.

Abu Qamar, M. I., & Suleiman, M. T. (2022). Evaluating the Influence of Surface Roughness on Interface Shear Strength of Cohesive Soil-Structure Interface Subjected to Axial Monotonic Loading. Geo-Congress 2022, 281–291. doi:10.1061/9780784484029.028.

Kou, H. L., Diao, W. Z., Zhang, W. C., Zheng, J. B., Ni, P., Bo-An, J. A. N. G., & Wu, C. (2021). Experimental study of interface shearing between calcareous sand and steel plate considering surface roughness and particle size. Applied Ocean Research, 107, 102490. doi:10.1016/j.apor.2020.102490.

Hebeler, G. L., Martinez, A., & Frost, J. D. (2015). Shear zone evolution of granular soils in contact with conventional and textured CPT friction sleeves. KSCE Journal of Civil Engineering, 20(4), 1267–1282. doi:10.1007/s12205-015-0767-6.

Sitbba Rao, K. S., Allam, M. M., & Robinson, R. G. (1998). Interfacial friction between sands and solid surfaces. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 131(2), 75–82. doi:10.1680/igeng.1998.30112.

Tovar-Valencia, R. D., Galvis-Castro, A., Salgado, R., & Prezzi, M. (2018). Effect of Surface Roughness on the Shaft Resistance of Displacement Model Piles in Sand. Journal of Geotechnical and Geoenvironmental Engineering, 144(3), 4017120. doi:10.1061/(asce)gt.1943-5606.0001828.

Han, F., Ganju, E., Salgado, R., & Prezzi, M. (2018). Effects of Interface Roughness, Particle Geometry, and Gradation on the Sand–Steel Interface Friction Angle. Journal of Geotechnical and Geoenvironmental Engineering, 144(12), 4018096. doi:10.1061/(asce)gt.1943-5606.0001990.

Martinez, A., & Frost, J. D. (2017). The influence of surface roughness form on the strength of sand-structure interfaces. Geotechnique Letters, 7(1), 104–111. doi:10.1680/jgele.16.00169.

Mortara, G., Mangiola, A., & Ghionna, V. N. (2007). Cyclic shear stress degradation and post-cyclic behaviour from sand-steel interface direct shear tests. Canadian Geotechnical Journal, 44(7), 739–752. doi:10.1139/T07-019.

Porcino, D., Fioravante, V., Ghionna, V. N., & Pedroni, S. (2003). Interface behavior of sands from constant normal stiffness direct shear tests. Geotechnical Testing Journal, 26(3), 289–301. doi:10.1520/gtj11308j.

Fioravante, V. (2002). On the shaft friction modelling of non-displacement piles in sand. Soils and Foundations, 42(2), 23–33. doi:10.3208/sandf.42.2_23.

Martinez, A., Palumbo, S., & Todd, B. D. (2019). Bioinspiration for Anisotropic Load Transfer at Soil–Structure Interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 145(10), 4019074. doi:10.1061/(asce)gt.1943-5606.0002138.

Qian, J. G., Gao, Q., Xue, J. F., Chen, H. W., & Huang, M. S. (2017). Soil and ribbed concrete slab interface modeling using large shear box and 3D FEM. Geomechanics and Engineering, 12(2), 295–312. doi:10.12989/gae.2017.12.2.295.

Abu Qamar, M. I., & Suleiman, M. T. (2023). Development of Cyclic Interface Shear Test Device and Testing Procedure to Measure the Response of Cohesive Soil-Structure Interface. Geotechnical Testing Journal, 46(3), 488–509. doi:10.1520/GTJ20210270.

Mortara, G., Mangiola, A., & Ghionna, V. N. (2007). Cyclic shear stress degradation and post-cyclic behaviour from sand-steel interface direct shear tests. Canadian Geotechnical Journal, 44(7), 739–752. doi:10.1139/T07-019.

O’Hara, K. B., & Martinez, A. (2020). Monotonic and Cyclic Frictional Resistance Directionality in Snakeskin-Inspired Surfaces and Piles. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), 4020116. doi:10.1061/(asce)gt.1943-5606.0002368.

O’Hara, K. B., & Martinez, A. (2023). Cyclic axial response and stability of snakeskin-inspired piles in sand. Acta Geotechnica, 19(3), 1139–1158. doi:10.1007/s11440-023-02007-y.

Li, H., Yan, C., Shi, Y., Sun, W., Bao, H., & Li, C. (2024). A statistical damage model for the soil–structure interface considering interface roughness and soil shear area. Construction and Building Materials, 431, 136606. doi:10.1016/j.conbuildmat.2024.136606.

DeJong, J. T., Frost, J. D., & Cargill, P. E. (2001). Effect of Surface Texturing on CPT Friction Sleeve Measurements. Journal of Geotechnical and Geoenvironmental Engineering, 127(2), 158–168. doi:10.1061/(asce)1090-0241(2001)127:2(158).

Frost, J. D., & DeJong, J. T. (2005). In Situ Assessment of Role of Surface Roughness on Interface Response. Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 498–511. doi:10.1061/(asce)1090-0241(2005)131:4(498).

Martinez, A., & Palumbo, S. (2018). Anisotropic Shear Behavior of Soil-Structure Interfaces: Bio-Inspiration from Snake Skin. IFCEE 2018, 94–104. doi:10.1061/9780784481592.010.

Prakash, B., Tiwari, A. K., Dash, S. R., & Patra, S. (2024). Structural evaluation and performance based optimization of approach slab design for mitigating bridge approach settlement through an Indian case study. Structures, 60, 105864. doi:10.1016/j.istruc.2024.105864.

Wang, S., Abu Qamar, M. I., Suleiman, M. T., & Vermaak, N. (2024). Evaluation of borehole interface shear test simulations for cohesive soils under monotonic loading: A comparison of Mohr–Coulomb and hypoplasticity constitutive models. Finite Elements in Analysis and Design, 237, 104180. doi:10.1016/j.finel.2024.104180.

Stutz, H.H., Martinez, A. (2018). Hypoplastic Simulation of Axisymmetric Interface Shear Tests in Granular Media. In: Wu, W., Yu, HS. (eds) Proceedings of China-Europe Conference on Geotechnical Engineering. Springer Series in Geomechanics and Geoengineering. Springer, Cham, Switzerland. doi:10.1007/978-3-319-97112-4_16.

Zhou, W. H., Yin, J. H., & Hong, C. Y. (2011). Finite element modelling of pullout testing on a soil nail in a pullout box under different overburden and grouting pressures. Canadian Geotechnical Journal, 48(4), 557–567. doi:10.1139/t10-086.

Martinez, A., Dejong, J., Akin, I., Aleali, A., Arson, C., Atkinson, J., Bandini, P., Baser, T., Borela, R., Boulanger, R., Burrall, M., Chen, Y., Collins, C., Cortes, D., Dai, S., DeJong, T., Del Dottore, E., Dorgan, K., Fragaszy, R., … Zheng, J. (2022). Bio-inspired geotechnical engineering: principles, current work, opportunities and challenges. Géotechnique, 72(8), 687–705. doi:10.1680/jgeot.20.p.170.

Wang, H. L., Zhou, W. H., Yin, Z. Y., & Jie, X. X. (2019). Effect of grain size distribution of sandy soil on shearing behaviors at soil–structure interface. Journal of Materials in Civil Engineering, 31(10), 04019238. doi:10.1061/(ASCE)MT.1943-5533.0002880.

Martinez, A. (2021). Skin Friction Directionality in Monotonically- and Cyclically-Loaded Bio-inspired Piles in Sand. DFI Journal - The Journal of the Deep Foundations Institute, 15(1). doi:10.37308/dfijnl.20200831.222.

O’Hara, K. B., & Martinez, A. (2024). Direction-dependent failure envelopes of sand-structure interfaces with snakeskin-inspired surfaces. Canadian Geotechnical Journal. doi:10.1139/cgj-2023-0522.

Martinez, A., Zamora, F., & Wilson, D. (2024). Field Evaluation of the Installation and Pullout of Snakeskin-Inspired Anchorage Elements. Journal of Geotechnical and Geoenvironmental Engineering, 150(8), 4024068. doi:10.1061/jggefk.gteng-12311.

DeJong, J. T., & Westgate, Z. J. (2009). Role of Initial State, Material Properties, and Confinement Condition on Local and Global Soil-Structure Interface Behavior. Journal of Geotechnical and Geoenvironmental Engineering, 135(11), 1646–1660. doi:10.1061/(asce)1090-0241(2009)135:11(1646).

Vafaei, N., Fakharian, K., & Sadrekarimi, A. (2021). Sand-sand and sand-steel interface grain-scale behavior under shearing. Transportation Geotechnics, 30, 100636. doi:10.1016/j.trgeo.2021.100636.

Vangla, P., & Latha, G. M. (2015). Influence of particle size on the friction and interfacial shear strength of sands of similar morphology. International Journal of Geosynthetics and Ground Engineering, 1, 1-12. doi:10.1007/s40891-014-0008-9.

Namjoo, A. M., Baniasadi, M., Jafari, K., Salam, S., Toufigh, M. M., & Toufigh, V. (2022). Studying effects of interface surface roughness, mean particle size, and particle shape on the shear behavior of sand-coated CFRP interface. Transportation Geotechnics, 37, 100841. doi:10.1016/j.trgeo.2022.100841.

ASTM D5321/D5321M1. (2021). D5321-12 Standard Test Method for Determining the Shear Strength of Soil-Geosynthetic and Geosynthetic-Geosynthetic Interfaces by Direct Shear. ASTM International, Pennsylvania, United States. doi:10.1520/D5321_D5321M-21.

DeJong, J. T., Randolph, M. F., & White, D. J. (2003). Interface load transfer degradation during cyclic loading: A microscale investigation. Soils and Foundations, 43(4), 81–93. doi:10.3208/sandf.43.4_81.

Martinez, A., & Stutz, H. H. (2019). Rate effects on the interface shear behaviour of normally and over consolidated clay. Geotechnique, 69(9), 801–815. doi:10.1680/jgeot.17.P.311.

ASTM D6913/D6913M-17 (2021). Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International, Pennsylvania, United States. doi:10.1520/D6913_D6913M-17.

ASTM D2487-17e1. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17E01.

ASTM D3080/D3080M-11. (2020). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International, Pennsylvania, United States. doi:10.1520/D3080_D3080M-11.

Westgate, Z. J., & DeJong, J. T. (2023). Role of Initial State, Material Properties, and Confinement Condition on Local and Global Soil–Structure Interface Behavior during Cyclic Shear. Journal of Geotechnical and Geoenvironmental Engineering, 149(10), 04023088. doi:10.1061/JGGEFK.GTENG-11306.

Jiang, M., Dai, Y., Cui, L., Shen, Z., & Wang, X. (2014). Investigating mechanism of inclined CPT in granular ground using DEM. Granular Matter, 16, 785-796. doi:10.1007/s10035-014-0508-2.

Dietz, M. S., & Lings, M. L. (2006). Postpeak Strength of Interfaces in a Stress-Dilatancy Framework. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1474–1484. doi:10.1061/(asce)1090-0241(2006)132:11(1474).

Frost, J. D., DeJong, J. T., & Recalde, M. (2002). Shear failure behavior of granular-continuum interfaces. Engineering Fracture Mechanics, 69(17), 2029–2048. doi:10.1016/S0013-7944(02)00075-9.

Hryciw, R. D., & Irsyam, M. (1993). Behavior of sand particles rigid ribbed inclusions during shear. Soils and Foundations, 33(3), 1–13. doi:10.3208/sandf1972.33.3_1.

Kishida, H., & Uesugi, M. (1987). Tests of the interface between sand and steel in the simple shear apparatus. Géotechnique, 37(1), 45–52. doi:10.1680/geot.1987.37.1.45.

Potyondy, J. G. (1961). Skin friction between various soils and construction materials. Geotechnique, 11(4), 339–353. doi:10.1680/geot.1961.11.4.339.

Uesugi, M., & Kishida, H. (1986). Influential Factors of Friction Between Steel and Dry Sands. Soils and Foundations, 26(2), 33–46. doi:10.3208/sandf1972.26.2_33.

Tehrani, F. S., Han, F., Salgado, R., & Prezzi, M. (2017). Laboratory Study of the Effect of Pile Surface Roughness on the Response of Soil and Non-Displacement Piles (pp. 256–264). doi:10.1061/9780784480465.027.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-10-06

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Mu’ath I. Abu Qamar, Mohammad F. Tamimi, Ammar A. Alshannaq, Rama Al-Masri

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message