Shearing Behavior at the Interface of Sand-Structured Surfaces Subjected to Monotonic Axial Loading
Abstract
Doi: 10.28991/CEJ-2024-010-10-06
Full Text: PDF
Keywords
References
Irsyam, M., & Hryciw, R. D. (1991). Friction and passive resistance in soil reinforced by plane ribbed inclusions. Géotechnique, 41(4), 485–498. doi:10.1680/geot.1991.41.4.485.
Mitchell, J. K., & Villet, W. C. (1987). Reinforcement of earth slopes and embankments. National Cooperative Highway Research Program report, Transportation Research Board, Washington, United States.
Dove, J. E., Frost, J. D., Han, J., & Bachus, R. C. (1997). The influence of geomembrane surface roughness on interface strength. Proceedings of Geosynthetics, 97(1), 863-876.
ardine, R.J., Lehane, B.M., Everton, S.J. (1993). Friction Coefficients for Piles in Sands and Silts. Offshore Site Investigation and Foundation Behaviour. Advances in Underwater Technology, Ocean Science and Offshore Engineering, 28. Springer, Dordrecht, Netherlands. doi:10.1007/978-94-017-2473-9_31.
O’Hara, K. B., & Martinez, A. (2020). Effects of Asperity Height on Monotonic and Cyclic Interface Behavior of Bioinspired Surfaces under Constant Normal Stiffness Conditions. Geo-Congress 2020, 243–252. doi:10.1061/9780784482834.027.
Tehrani, F. S., Han, F., Salgado, R., Prezzi, M., Tovar, R. D., & Castro, A. G. (2016). Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand. Geotechnique, 66(5), 386–400. doi:10.1680/jgeot.15.P.007.
Abu Qamar, M. I., & Suleiman, M. T. (2023). Evaluating the Effects of Asperity Height on Shear Strength of Cohesive Soil-Structure Interface Subjected to Monotonic and Cyclic Axial Loading, 270–280. doi:10.1061/9780784484685.028.
Dove, J. E., & Jarrett, J. B. (2002). Behavior of Dilative Sand Interfaces in a Geotribology Framework. Journal of Geotechnical and Geoenvironmental Engineering, 128(1), 25–37. doi:10.1061/(asce)1090-0241(2002)128:1(25).
Martinez, A., & Frost, J. D. (2017). The influence of surface roughness form on the strength of sand-structure interfaces. Geotechnique Letters, 7(1), 104–111. doi:10.1680/jgele.16.00169.
Uesugi, M., & Kishida, H. (1986). Frictional Resistance at Yield Between Dry Sand and Mild Steel. Soils and Foundations, 26(4), 139–149. doi:10.3208/sandf1972.26.4_139.
Abu Qamar, M. I., & Suleiman, M. T. (2022). Evaluating the Influence of Surface Roughness on Interface Shear Strength of Cohesive Soil-Structure Interface Subjected to Axial Monotonic Loading. Geo-Congress 2022, 281–291. doi:10.1061/9780784484029.028.
Kou, H. L., Diao, W. Z., Zhang, W. C., Zheng, J. B., Ni, P., Bo-An, J. A. N. G., & Wu, C. (2021). Experimental study of interface shearing between calcareous sand and steel plate considering surface roughness and particle size. Applied Ocean Research, 107, 102490. doi:10.1016/j.apor.2020.102490.
Hebeler, G. L., Martinez, A., & Frost, J. D. (2015). Shear zone evolution of granular soils in contact with conventional and textured CPT friction sleeves. KSCE Journal of Civil Engineering, 20(4), 1267–1282. doi:10.1007/s12205-015-0767-6.
Sitbba Rao, K. S., Allam, M. M., & Robinson, R. G. (1998). Interfacial friction between sands and solid surfaces. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 131(2), 75–82. doi:10.1680/igeng.1998.30112.
Tovar-Valencia, R. D., Galvis-Castro, A., Salgado, R., & Prezzi, M. (2018). Effect of Surface Roughness on the Shaft Resistance of Displacement Model Piles in Sand. Journal of Geotechnical and Geoenvironmental Engineering, 144(3), 4017120. doi:10.1061/(asce)gt.1943-5606.0001828.
Han, F., Ganju, E., Salgado, R., & Prezzi, M. (2018). Effects of Interface Roughness, Particle Geometry, and Gradation on the Sand–Steel Interface Friction Angle. Journal of Geotechnical and Geoenvironmental Engineering, 144(12), 4018096. doi:10.1061/(asce)gt.1943-5606.0001990.
Martinez, A., & Frost, J. D. (2017). The influence of surface roughness form on the strength of sand-structure interfaces. Geotechnique Letters, 7(1), 104–111. doi:10.1680/jgele.16.00169.
Mortara, G., Mangiola, A., & Ghionna, V. N. (2007). Cyclic shear stress degradation and post-cyclic behaviour from sand-steel interface direct shear tests. Canadian Geotechnical Journal, 44(7), 739–752. doi:10.1139/T07-019.
Porcino, D., Fioravante, V., Ghionna, V. N., & Pedroni, S. (2003). Interface behavior of sands from constant normal stiffness direct shear tests. Geotechnical Testing Journal, 26(3), 289–301. doi:10.1520/gtj11308j.
Fioravante, V. (2002). On the shaft friction modelling of non-displacement piles in sand. Soils and Foundations, 42(2), 23–33. doi:10.3208/sandf.42.2_23.
Martinez, A., Palumbo, S., & Todd, B. D. (2019). Bioinspiration for Anisotropic Load Transfer at Soil–Structure Interfaces. Journal of Geotechnical and Geoenvironmental Engineering, 145(10), 4019074. doi:10.1061/(asce)gt.1943-5606.0002138.
Qian, J. G., Gao, Q., Xue, J. F., Chen, H. W., & Huang, M. S. (2017). Soil and ribbed concrete slab interface modeling using large shear box and 3D FEM. Geomechanics and Engineering, 12(2), 295–312. doi:10.12989/gae.2017.12.2.295.
Abu Qamar, M. I., & Suleiman, M. T. (2023). Development of Cyclic Interface Shear Test Device and Testing Procedure to Measure the Response of Cohesive Soil-Structure Interface. Geotechnical Testing Journal, 46(3), 488–509. doi:10.1520/GTJ20210270.
Mortara, G., Mangiola, A., & Ghionna, V. N. (2007). Cyclic shear stress degradation and post-cyclic behaviour from sand-steel interface direct shear tests. Canadian Geotechnical Journal, 44(7), 739–752. doi:10.1139/T07-019.
O’Hara, K. B., & Martinez, A. (2020). Monotonic and Cyclic Frictional Resistance Directionality in Snakeskin-Inspired Surfaces and Piles. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), 4020116. doi:10.1061/(asce)gt.1943-5606.0002368.
O’Hara, K. B., & Martinez, A. (2023). Cyclic axial response and stability of snakeskin-inspired piles in sand. Acta Geotechnica, 19(3), 1139–1158. doi:10.1007/s11440-023-02007-y.
Li, H., Yan, C., Shi, Y., Sun, W., Bao, H., & Li, C. (2024). A statistical damage model for the soil–structure interface considering interface roughness and soil shear area. Construction and Building Materials, 431, 136606. doi:10.1016/j.conbuildmat.2024.136606.
DeJong, J. T., Frost, J. D., & Cargill, P. E. (2001). Effect of Surface Texturing on CPT Friction Sleeve Measurements. Journal of Geotechnical and Geoenvironmental Engineering, 127(2), 158–168. doi:10.1061/(asce)1090-0241(2001)127:2(158).
Frost, J. D., & DeJong, J. T. (2005). In Situ Assessment of Role of Surface Roughness on Interface Response. Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 498–511. doi:10.1061/(asce)1090-0241(2005)131:4(498).
Martinez, A., & Palumbo, S. (2018). Anisotropic Shear Behavior of Soil-Structure Interfaces: Bio-Inspiration from Snake Skin. IFCEE 2018, 94–104. doi:10.1061/9780784481592.010.
Prakash, B., Tiwari, A. K., Dash, S. R., & Patra, S. (2024). Structural evaluation and performance based optimization of approach slab design for mitigating bridge approach settlement through an Indian case study. Structures, 60, 105864. doi:10.1016/j.istruc.2024.105864.
Wang, S., Abu Qamar, M. I., Suleiman, M. T., & Vermaak, N. (2024). Evaluation of borehole interface shear test simulations for cohesive soils under monotonic loading: A comparison of Mohr–Coulomb and hypoplasticity constitutive models. Finite Elements in Analysis and Design, 237, 104180. doi:10.1016/j.finel.2024.104180.
Stutz, H.H., Martinez, A. (2018). Hypoplastic Simulation of Axisymmetric Interface Shear Tests in Granular Media. In: Wu, W., Yu, HS. (eds) Proceedings of China-Europe Conference on Geotechnical Engineering. Springer Series in Geomechanics and Geoengineering. Springer, Cham, Switzerland. doi:10.1007/978-3-319-97112-4_16.
Zhou, W. H., Yin, J. H., & Hong, C. Y. (2011). Finite element modelling of pullout testing on a soil nail in a pullout box under different overburden and grouting pressures. Canadian Geotechnical Journal, 48(4), 557–567. doi:10.1139/t10-086.
Martinez, A., Dejong, J., Akin, I., Aleali, A., Arson, C., Atkinson, J., Bandini, P., Baser, T., Borela, R., Boulanger, R., Burrall, M., Chen, Y., Collins, C., Cortes, D., Dai, S., DeJong, T., Del Dottore, E., Dorgan, K., Fragaszy, R., … Zheng, J. (2022). Bio-inspired geotechnical engineering: principles, current work, opportunities and challenges. Géotechnique, 72(8), 687–705. doi:10.1680/jgeot.20.p.170.
Wang, H. L., Zhou, W. H., Yin, Z. Y., & Jie, X. X. (2019). Effect of grain size distribution of sandy soil on shearing behaviors at soil–structure interface. Journal of Materials in Civil Engineering, 31(10), 04019238. doi:10.1061/(ASCE)MT.1943-5533.0002880.
Martinez, A. (2021). Skin Friction Directionality in Monotonically- and Cyclically-Loaded Bio-inspired Piles in Sand. DFI Journal - The Journal of the Deep Foundations Institute, 15(1). doi:10.37308/dfijnl.20200831.222.
O’Hara, K. B., & Martinez, A. (2024). Direction-dependent failure envelopes of sand-structure interfaces with snakeskin-inspired surfaces. Canadian Geotechnical Journal. doi:10.1139/cgj-2023-0522.
Martinez, A., Zamora, F., & Wilson, D. (2024). Field Evaluation of the Installation and Pullout of Snakeskin-Inspired Anchorage Elements. Journal of Geotechnical and Geoenvironmental Engineering, 150(8), 4024068. doi:10.1061/jggefk.gteng-12311.
DeJong, J. T., & Westgate, Z. J. (2009). Role of Initial State, Material Properties, and Confinement Condition on Local and Global Soil-Structure Interface Behavior. Journal of Geotechnical and Geoenvironmental Engineering, 135(11), 1646–1660. doi:10.1061/(asce)1090-0241(2009)135:11(1646).
Vafaei, N., Fakharian, K., & Sadrekarimi, A. (2021). Sand-sand and sand-steel interface grain-scale behavior under shearing. Transportation Geotechnics, 30, 100636. doi:10.1016/j.trgeo.2021.100636.
Vangla, P., & Latha, G. M. (2015). Influence of particle size on the friction and interfacial shear strength of sands of similar morphology. International Journal of Geosynthetics and Ground Engineering, 1, 1-12. doi:10.1007/s40891-014-0008-9.
Namjoo, A. M., Baniasadi, M., Jafari, K., Salam, S., Toufigh, M. M., & Toufigh, V. (2022). Studying effects of interface surface roughness, mean particle size, and particle shape on the shear behavior of sand-coated CFRP interface. Transportation Geotechnics, 37, 100841. doi:10.1016/j.trgeo.2022.100841.
ASTM D5321/D5321M1. (2021). D5321-12 Standard Test Method for Determining the Shear Strength of Soil-Geosynthetic and Geosynthetic-Geosynthetic Interfaces by Direct Shear. ASTM International, Pennsylvania, United States. doi:10.1520/D5321_D5321M-21.
DeJong, J. T., Randolph, M. F., & White, D. J. (2003). Interface load transfer degradation during cyclic loading: A microscale investigation. Soils and Foundations, 43(4), 81–93. doi:10.3208/sandf.43.4_81.
Martinez, A., & Stutz, H. H. (2019). Rate effects on the interface shear behaviour of normally and over consolidated clay. Geotechnique, 69(9), 801–815. doi:10.1680/jgeot.17.P.311.
ASTM D6913/D6913M-17 (2021). Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International, Pennsylvania, United States. doi:10.1520/D6913_D6913M-17.
ASTM D2487-17e1. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17E01.
ASTM D3080/D3080M-11. (2020). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International, Pennsylvania, United States. doi:10.1520/D3080_D3080M-11.
Westgate, Z. J., & DeJong, J. T. (2023). Role of Initial State, Material Properties, and Confinement Condition on Local and Global Soil–Structure Interface Behavior during Cyclic Shear. Journal of Geotechnical and Geoenvironmental Engineering, 149(10), 04023088. doi:10.1061/JGGEFK.GTENG-11306.
Jiang, M., Dai, Y., Cui, L., Shen, Z., & Wang, X. (2014). Investigating mechanism of inclined CPT in granular ground using DEM. Granular Matter, 16, 785-796. doi:10.1007/s10035-014-0508-2.
Dietz, M. S., & Lings, M. L. (2006). Postpeak Strength of Interfaces in a Stress-Dilatancy Framework. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1474–1484. doi:10.1061/(asce)1090-0241(2006)132:11(1474).
Frost, J. D., DeJong, J. T., & Recalde, M. (2002). Shear failure behavior of granular-continuum interfaces. Engineering Fracture Mechanics, 69(17), 2029–2048. doi:10.1016/S0013-7944(02)00075-9.
Hryciw, R. D., & Irsyam, M. (1993). Behavior of sand particles rigid ribbed inclusions during shear. Soils and Foundations, 33(3), 1–13. doi:10.3208/sandf1972.33.3_1.
Kishida, H., & Uesugi, M. (1987). Tests of the interface between sand and steel in the simple shear apparatus. Géotechnique, 37(1), 45–52. doi:10.1680/geot.1987.37.1.45.
Potyondy, J. G. (1961). Skin friction between various soils and construction materials. Geotechnique, 11(4), 339–353. doi:10.1680/geot.1961.11.4.339.
Uesugi, M., & Kishida, H. (1986). Influential Factors of Friction Between Steel and Dry Sands. Soils and Foundations, 26(2), 33–46. doi:10.3208/sandf1972.26.2_33.
Tehrani, F. S., Han, F., Salgado, R., & Prezzi, M. (2017). Laboratory Study of the Effect of Pile Surface Roughness on the Response of Soil and Non-Displacement Piles (pp. 256–264). doi:10.1061/9780784480465.027.
DOI: 10.28991/CEJ-2024-010-10-06
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mu’ath I. Abu Qamar, Mohammad F. Tamimi, Ammar A. Alshannaq, Rama Al-Masri
This work is licensed under a Creative Commons Attribution 4.0 International License.