Artificial Intelligence Using FFNN Models for Computing Soil Complex Permittivity and Diesel Pollution Content

Hamsa Nimer, Rabah Ismail, Adnan Rawashdeh, Hashem Al-Mattarneh, Mohanad Khodier, Randa Hatamleh, Musab Abuaddous

Abstract


Soil pollution caused by hydrocarbons, such as diesel, poses significant risks to both human health and the ecosystem. The evaluation of soil pollution and various soil engineering applications often relies on the analysis of complex permittivity, encompassing parameters such as dielectric constant and dielectric loss. Various computational models, including theoretical physics-based models, mixture theory models, statistical empirical models, and artificial neural network (ANN) models, have been explored for computing soil complex permittivity and predicting water and pollutant content. Theoretical models require detailed data that is often unavailable, and thus have limited applicability. Mixture models tend to underestimate soil characteristics due to inaccuracies in permittivity estimation of soil phases. While empirical models are widely used, their applicability is restricted to specific soil types, datasets, and locations. ANN models offer promising predictions, accommodating nonlinear phenomena and allowing for missing information and variables. In this study, capacitive electromagnetic electrode sensors were utilized to determine the complex permittivity of soil contaminated with varying levels of diesel at different moisture levels. Theoretical mixture, empirical, and Feed Forward Neural Network (FFNN) models were employed to compute the permittivity of polluted soil based on its phases and to predict the level of diesel pollution. A comparison of these modeling approaches revealed that the FFNN model exhibited the best performance. The ANN model demonstrated superior performance metrics, including a high correlation coefficient and lower mean square error. Specifically, the correlation coefficients for the FFNN model were 0.9942 for training samples, 0.9967 for validation samples, and 0.9977 for test samples. Additionally, the ANN model yielded the lowest mean square error compared to the other three models.

 

Doi: 10.28991/CEJ-2024-010-09-018

Full Text: PDF


Keywords


Complex Permittivity; Dielectric Properties; Soil; Diesel Contamination; Water Content; Artificial Neural Network; Artificial Intelligence.

References


Jiang, M., He, L., Niazi, N. K., Wang, H., Gustave, W., Vithanage, M., Geng, K., Shang, H., Zhang, X., & Wang, Z. (2023). Nanobiochar for the remediation of contaminated soil and water: challenges and opportunities. Biochar, 5(1), 2. doi:10.1007/s42773-022-00201-x.

Zhang, X., Gustave, W., He, L., & Yang, X. (2023). Soil pollution, risk assessment and remediation. Frontiers in Environmental Science, 11, 1252139. doi:10.3389/978-2-8325-3139-6.

Schreiber, M. E., & Cozzarelli, I. M. (2021). Arsenic release to the environment from hydrocarbon production, storage, transportation, use and waste management. Journal of Hazardous Materials, 411, 125013. doi:10.1016/j.jhazmat.2020.125013.

Costantini, E. A. C., Castelli, F., Raimondi, S., & Lorenzoni, P. (2002). Assessing Soil Moisture Regimes with Traditional and New Methods. Soil Science Society of America Journal, 66(6), 1889–1896. doi:10.2136/sssaj2002.1889.

Dahim, M., Abuaddous, M., Ismail, R., Al-Mattarneh, H., & Jaradat, A. (2020). Using a Dielectric Capacitance Cell to Determine the Dielectric Properties of Pure Sand Artificially Contaminated with Pb, Cd, Fe, and Zn. Applied and Environmental Soil Science, 2020, 1–10. doi:10.1155/2020/8838054.

Al-Mattarneh, H. M. A., Ghodgaonkar, D. K., & Majid, W. M. B. W. A. (2001). Microwave nondestructive testing for classification of Malaysian timber using free-space techniques. 6th International Symposium on Signal Processing and Its Applications, ISSPA 2001 - Proceedings; 6 Tutorials in Communications, Image Processing and Signal Analysis, 2, 450–453. doi:10.1109/ISSPA.2001.950177.

Ismail, R., Al-Mattarneh, H., Malkawi, A. B., Abuaddous, M., Aljamal, M., & Trrad, I. (2024). Prediction Moisture Content and Strength of Wood Using Free-Space Microwave Transmission Line NDT. 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD), 47, 492–499. doi:10.1109/ssd61670.2024.10548770..

Luciani, G., Berardinelli, A., Crescentini, M., Romani, A., Tartagni, M., & Ragni, L. (2017). Non-invasive soil moisture sensing based on open-ended waveguide and multivariate analysis. Sensors and Actuators, A: Physical, 265, 236–245. doi:10.1016/j.sna.2017.08.034.

Al-Mattarneh, H. M. A., Ghodgaoankar, D. K., Abdul Hamid, H., Al-Fugara, A., & Abu Bakar, S. H. (2002). Microwave reflectometer system for continuous monitoring of water quality. Student Conference on Research and Development, 40, 430–433. doi:10.1109/scored.2002.1033150.

Ermeey, A. K., Ghodgaonkar, D. K., & Al-Mattarneh, H. M. A. (2003). Three probe reflectometer algorithm for complex coefficient measurements of water quality at microwave frequencies. 2003 Asia-Pacific Conference on Applied Electromagnetics, APACE 2003 - Proceedings, 1234481, 113–115. doi:10.1109/APACE.2003.1234481.

He, H., Aogu, K., Li, M., Xu, J., Sheng, W., Jones, S. B., González-Teruel, J. D., Robinson, D. A., Horton, R., Bristow, K., Dyck, M., …, Feng, H., Si, B., & Lv, J. (2021). A review of time domain reflectometry (TDR) applications in porous media. Advances in Agronomy, Elsevier, Amsterdam, Netherland. doi:10.1016/bs.agron.2021.02.003.

Kulyandin, G. A., Fedorov, M. P., Savvin, D. V., & Fedorova, L. L. (2021). Identification of Technogenic Pollution of soil Environment by The GPR Method. Engineering and Mining Geophysics 2021, 1–5. doi:10.3997/2214-4609.202152089.

Al-Mattarneh, H., & Alwadie, A. (2016). Development of Low Frequency Dielectric Cell for Water Quality Application. Procedia Engineering, 148, 687–693. doi:10.1016/j.proeng.2016.06.554.

Arora, H. C., Bhushan, B., Kumar, A., Kumar, P., Hadzima-Nyarko, M., Radu, D., ... & Kapoor, N. R. (2024). Ensemble learning based compressive strength prediction of concrete structures through real-time non-destructive testing. Scientific reports, 14(1), 1824. doi:10.1038/s41598-024-52046-y.

Al-Mattarneh, H. M. A., Ghodgaonkar, D. K., & Majid, W. M. B. W. A. (2001). Determination of compressive strength of concrete using free-space reflection measurements in the frequency range of 8 - 12.5 GHz. Asia-Pacific Microwave Conference Proceedings, APMC, 2, 679–682. doi:10.1109/apmc.2001.985463.

Al-Mattarneh, H., Ismail, R., Nuruddin, M., Shafiq, N., & Dahim, M. (2016). Characterization of Pb and Cd contaminated sandy soil by dielectric means. Engineering Challenges for Sustainable Future, CRC Press, Boca Raton, United States doi:10.1201/b21942-65.

Ismail, R., Dahim, M., Jaradat, A., Hatamleh, R., Telfah, D., Abuaddous, M., & Al-Mattarneh, H. (2021). Field Dielectric Sensor for Soil Pollution Application. IOP Conference Series: Earth and Environmental Science, 801(1), 012003. doi:10.1088/1755-1315/801/1/012003.

Dahim, M., Abuaddous, M., Al-Mattarneh, H., Rawashdeh, A., & Ismail, R. (2021). Enhancement of road pavement material using conventional and nano-crude oil fly ash. Applied Nanoscience (Switzerland), 11(10), 2517–2524. doi:10.1007/s13204-021-02103-z.

Telfah, D., Al-Mattarneh, H., Ismail, R., Rawashdeh, A., Aljamal, M., & Dahim, M. (2024). Development of permittivity sensor for advanced in situ testing and evaluation of building material. 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD), 120, 164–169. doi:10.1109/ssd61670.2024.10548329.

Malkawi, A. B., Nuruddin, M. F., Fauzi, A., Al-Mattarneh, H., & Mohammed, B. S. (2017). Effect of plasticizers and water on properties of HCFA geopolymers. Key Engineering Materials, 733 KEM, 76–79. doi:10.4028/www.scientific.net/KEM.733.76.

Abdullahi, M., Al-Mattarneh, H. M. A., & Mohammed, B. S. (2009). Equations for mix design of structural lightweight concrete. European Journal of Scientific Research, 31(1), 132–141.

Zain, M. F. M., Karim, M. R., Islam, M. N., Hossain, M. M., Jamil, M., & Al-Mattarneh, H. M. A. (2015). Prediction of strength and slump of silica fume incorporated high-performance concrete. Asian Journal of Scientific Research, 8(3), 264–277. doi:10.3923/ajsr.2015.264.277.

Monjardin, C. E. F., Power, C., Senoro, D. B., & De Jesus, K. L. M. (2023). Application of Machine Learning for Prediction and Monitoring of Manganese Concentration in Soil and Surface Water. Water (Switzerland), 15(13), 2318. doi:10.3390/w15132318.

Pham, B. T., Singh, S. K., & Ly, H. B. (2020). Using artificial neural network (ANN) for prediction of soil coefficient of consolidation. Vietnam Journal of Earth Sciences, 42(4), 311–319. doi:10.15625/0866-7187/42/4/15008.

Ayoubi, S., Pilehvar, A., Mokhtari, P., & L., K. (2011). Application of Artificial Neural Network (ANN) to Predict Soil Organic Matter Using Remote Sensing Data in Two Ecosystems. Biomass and Remote Sensing of Biomass, Intech open, London, United Kingdom. doi:10.5772/18956.

Carvalho, M. G., Barreto, E. M. do R., Ferreira, J. A. da C., França, F. A. N. de, & Freitas Neto, O. de. (2022). Applications of artificial intelligence in the determination of soil shear strength parameters: a systematic mapping of the literature. Research, Society and Development, 11(1), e27711124506. doi:10.33448/rsd-v11i1.24506.

Negiş, H. (2024). Using Models and Artificial Neural Networks to Predict Soil Compaction Based on Textural Properties of Soils under Agriculture. Agriculture (Switzerland), 14(1), 47. doi:10.3390/agriculture14010047.

Li, B., You, Z., Ni, K., & Wang, Y. (2024). Prediction of Soil Compaction Parameters Using Machine Learning Models. Applied Sciences (Switzerland), 14(7), 2716. doi:10.3390/app14072716.

Wrzesiński, G., & Markiewicz, A. (2022). Article Prediction of Permeability Coefficient k in Sandy Soils Using ANN. Sustainability (Switzerland), 14(11), 6736. doi:10.3390/su14116736.

Bieganowski, A., Józefaciuk, G., Bandura, L., Guz, Ł., Łagód, G., & Franus, W. (2018). Evaluation of hydrocarbon soil pollution using e-nose. Sensors (Switzerland), 18(8), 2463. doi:10.3390/s18082463.

Han, H., Choi, C., Kim, J., Morrison, R. R., Jung, J., & Kim, H. S. (2021). Multiple-depth soil moisture estimates using artificial neural network and long short-term memory models. Water (Switzerland), 13(18), 2584. doi:10.3390/w13182584.

Wang, Z., Zhang, W., & He, Y. (2023). Soil Heavy-Metal Pollution Prediction Methods Based on Two Improved Neural Network Models. Applied Sciences (Switzerland), 13(21), 11647. doi:10.3390/app132111647.

Hippel, A. V. (1954). Dielectric materials and applications. Artech House, London, United Kingdom.

Pandey, G., Weber, R. J., & Kumar, R. (2018). Agricultural Cyber-Physical System: In-Situ Soil Moisture and Salinity Estimation by Dielectric Mixing. IEEE Access, 6, 43179–43191. doi:10.1109/access.2018.2862634.

Mironov, V. L., Kosolapova, L. G., & Fomin, S. V. (2009). Physically and mineralogically based spectroscopic dielectric model for moist soils. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2059–2070. doi:10.1109/TGRS.2008.2011631.

Zhang, L., Meng, Q., Hu, D., Zhang, Y., Yao, S., & Chen, X. (2020). Comparison of different soil dielectric models for microwave soil moisture retrievals. International Journal of Remote Sensing, 41(8), 3054–3069. doi:10.1080/01431161.2019.1698077.

Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 9(4), 341–351. doi:10.1063/1.1750906.

Hong, T., Tang, Z., Zhou, Y., Zhu, H., & Huang, K. (2019). Dielectric relaxation of interacting/polarizable polar molecules with linear reaction dynamics in a weak alternating field. Chemical Physics Letters, 727, 66–71. doi:10.1016/j.cplett.2019.04.053.

Umoh, G. V., Leal-Perez, J. E., Olive-Méndez, S. F., González-Hernández, J., Mercader-Trejo, F., Herrera-Basurto, R., Auciello, O., & Hurtado-Macias, A. (2022). Complex dielectric function, Cole-Cole, and optical properties evaluation in BiMnO3 thin-films by Valence Electron Energy Loss Spectrometry (VEELS) analysis. Ceramics International, 48(15), 22182–22187. doi:10.1016/j.ceramint.2022.04.212.

Chenaf, D., & Amara N. (2001). Time domain Reflectometery for the Characteristisation of Diesel Contaminated Soils. Proceedings TDR 2001, Second International Symposium and Workshop on Time Domain Reflectometry for innovative Geotechnical Applications, 5-7 September, 2001, Northwestern University in Evanston, Illinois, United States.

Sihvola, A. (1999). Electromagnetic Mixing Formulas and Applications. Electromagnetic Mixing Formulas and Applications. The Institution of Engineering and Technology, London, United Kingdom. doi:10.1049/pbew047e.

Birchak, J. R., Gardner, C. G., Hipp, J. E., & Victor, J. M. (1974). High Dielectric Constant Microwave Probes for Sensing Soil Moisture. Proceedings of the IEEE, 62(1), 93–98. doi:10.1109/PROC.1974.9388.

Looyenga, H. (1965). Dielectric constants of heterogeneous mixtures. Physica, 31(3), 401–406. doi:10.1016/0031-8914(65)90045-5.

Zakri, T., Laurent, J. P., & Vauclin, M. (1998). Theoretical evidence for “Lichtenecker’s mixture formulae” based on the effective medium theory. Journal of Physics D: Applied Physics, 31(13), 1589–1594. doi:10.1088/0022-3727/31/13/013.

Topp, G. C. (2003). State of the art of measuring soil water content. Hydrological Processes, 17(14), 2993–2996. doi:10.1002/hyp.5148.

Woodhead, I. M., Buchan, G. D., Christie, J. H., & Irie, K. (2003). A General Dielectric Model for Time Domain Reflectometry. Biosystems Engineering, 86(2), 207–216. doi:10.1016/S1537-5110(03)00131-4.

Tenza-Abril, A. J., Benavente, D., Pla, C., Baeza-Brotons, F., Valdes-Abellan, J., & Solak, A. M. (2020). Statistical and experimental study for determining the influence of the segregation phenomenon on physical and mechanical properties of lightweight concrete. Construction and Building Materials, 238, 117642. doi:10.1016/j.conbuildmat.2019.117642.

Nuruddin, M., Malkawi, A., Fauzi, A., Mohammed, B., & Al-Mattarneh, H. (2016). Effects of alkaline solution on the microstructure of HCFA geopolymers. Engineering Challenges for Sustainable Future, CRC Press, Boca Raton, United States. doi:10.1201/b21942-102.

Yasin, A. A., Awwad, M. T., Malkawi, A. B., Maraqa, F. R., & Alomari, J. A. (2023). Optimization of Tuff Stones Content in Lightweight Concrete Using Artificial Neural Networks. Civil Engineering Journal (Iran), 9(11), 2823–2833. doi:10.28991/CEJ-2023-09-11-013.

Najjar, Y. M., & Ali, H. E. (1998). CPT-based liquefaction potential assessment: A neuronet approach. Geotechnical Earthquake Engineering and Soil Dynamics III, 1, 542–553.

Sivakugan, N., Eckersley, J., & Li, H. (1998). Settlement predictions using neural networks. Australian Civil Engineering Transactions, 40, 49-52.

Sinha, S. K., & Wang, M. C. (2008). Artificial neural network prediction models for soil compaction and permeability. Geotechnical and Geological Engineering, 26(1), 47–64. doi:10.1007/s10706-007-9146-3.

Ismail, R. (2024). Improving wastewater treatment plant performance: an ANN-based predictive model for managing average daily overflow and resource allocation optimization using Tabu search. Asian Journal of Civil Engineering, 25(2), 1427–1441. doi:10.1007/s42107-023-00853-5.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-09-018

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Hashem Al-Mattarneh

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message