Artificial Intelligence Using FFNN Models for Computing Soil Complex Permittivity and Diesel Pollution Content
Abstract
Doi: 10.28991/CEJ-2024-010-09-018
Full Text: PDF
Keywords
References
Jiang, M., He, L., Niazi, N. K., Wang, H., Gustave, W., Vithanage, M., Geng, K., Shang, H., Zhang, X., & Wang, Z. (2023). Nanobiochar for the remediation of contaminated soil and water: challenges and opportunities. Biochar, 5(1), 2. doi:10.1007/s42773-022-00201-x.
Zhang, X., Gustave, W., He, L., & Yang, X. (2023). Soil pollution, risk assessment and remediation. Frontiers in Environmental Science, 11, 1252139. doi:10.3389/978-2-8325-3139-6.
Schreiber, M. E., & Cozzarelli, I. M. (2021). Arsenic release to the environment from hydrocarbon production, storage, transportation, use and waste management. Journal of Hazardous Materials, 411, 125013. doi:10.1016/j.jhazmat.2020.125013.
Costantini, E. A. C., Castelli, F., Raimondi, S., & Lorenzoni, P. (2002). Assessing Soil Moisture Regimes with Traditional and New Methods. Soil Science Society of America Journal, 66(6), 1889–1896. doi:10.2136/sssaj2002.1889.
Dahim, M., Abuaddous, M., Ismail, R., Al-Mattarneh, H., & Jaradat, A. (2020). Using a Dielectric Capacitance Cell to Determine the Dielectric Properties of Pure Sand Artificially Contaminated with Pb, Cd, Fe, and Zn. Applied and Environmental Soil Science, 2020, 1–10. doi:10.1155/2020/8838054.
Al-Mattarneh, H. M. A., Ghodgaonkar, D. K., & Majid, W. M. B. W. A. (2001). Microwave nondestructive testing for classification of Malaysian timber using free-space techniques. 6th International Symposium on Signal Processing and Its Applications, ISSPA 2001 - Proceedings; 6 Tutorials in Communications, Image Processing and Signal Analysis, 2, 450–453. doi:10.1109/ISSPA.2001.950177.
Ismail, R., Al-Mattarneh, H., Malkawi, A. B., Abuaddous, M., Aljamal, M., & Trrad, I. (2024). Prediction Moisture Content and Strength of Wood Using Free-Space Microwave Transmission Line NDT. 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD), 47, 492–499. doi:10.1109/ssd61670.2024.10548770..
Luciani, G., Berardinelli, A., Crescentini, M., Romani, A., Tartagni, M., & Ragni, L. (2017). Non-invasive soil moisture sensing based on open-ended waveguide and multivariate analysis. Sensors and Actuators, A: Physical, 265, 236–245. doi:10.1016/j.sna.2017.08.034.
Al-Mattarneh, H. M. A., Ghodgaoankar, D. K., Abdul Hamid, H., Al-Fugara, A., & Abu Bakar, S. H. (2002). Microwave reflectometer system for continuous monitoring of water quality. Student Conference on Research and Development, 40, 430–433. doi:10.1109/scored.2002.1033150.
Ermeey, A. K., Ghodgaonkar, D. K., & Al-Mattarneh, H. M. A. (2003). Three probe reflectometer algorithm for complex coefficient measurements of water quality at microwave frequencies. 2003 Asia-Pacific Conference on Applied Electromagnetics, APACE 2003 - Proceedings, 1234481, 113–115. doi:10.1109/APACE.2003.1234481.
He, H., Aogu, K., Li, M., Xu, J., Sheng, W., Jones, S. B., González-Teruel, J. D., Robinson, D. A., Horton, R., Bristow, K., Dyck, M., …, Feng, H., Si, B., & Lv, J. (2021). A review of time domain reflectometry (TDR) applications in porous media. Advances in Agronomy, Elsevier, Amsterdam, Netherland. doi:10.1016/bs.agron.2021.02.003.
Kulyandin, G. A., Fedorov, M. P., Savvin, D. V., & Fedorova, L. L. (2021). Identification of Technogenic Pollution of soil Environment by The GPR Method. Engineering and Mining Geophysics 2021, 1–5. doi:10.3997/2214-4609.202152089.
Al-Mattarneh, H., & Alwadie, A. (2016). Development of Low Frequency Dielectric Cell for Water Quality Application. Procedia Engineering, 148, 687–693. doi:10.1016/j.proeng.2016.06.554.
Arora, H. C., Bhushan, B., Kumar, A., Kumar, P., Hadzima-Nyarko, M., Radu, D., ... & Kapoor, N. R. (2024). Ensemble learning based compressive strength prediction of concrete structures through real-time non-destructive testing. Scientific reports, 14(1), 1824. doi:10.1038/s41598-024-52046-y.
Al-Mattarneh, H. M. A., Ghodgaonkar, D. K., & Majid, W. M. B. W. A. (2001). Determination of compressive strength of concrete using free-space reflection measurements in the frequency range of 8 - 12.5 GHz. Asia-Pacific Microwave Conference Proceedings, APMC, 2, 679–682. doi:10.1109/apmc.2001.985463.
Al-Mattarneh, H., Ismail, R., Nuruddin, M., Shafiq, N., & Dahim, M. (2016). Characterization of Pb and Cd contaminated sandy soil by dielectric means. Engineering Challenges for Sustainable Future, CRC Press, Boca Raton, United States doi:10.1201/b21942-65.
Ismail, R., Dahim, M., Jaradat, A., Hatamleh, R., Telfah, D., Abuaddous, M., & Al-Mattarneh, H. (2021). Field Dielectric Sensor for Soil Pollution Application. IOP Conference Series: Earth and Environmental Science, 801(1), 012003. doi:10.1088/1755-1315/801/1/012003.
Dahim, M., Abuaddous, M., Al-Mattarneh, H., Rawashdeh, A., & Ismail, R. (2021). Enhancement of road pavement material using conventional and nano-crude oil fly ash. Applied Nanoscience (Switzerland), 11(10), 2517–2524. doi:10.1007/s13204-021-02103-z.
Telfah, D., Al-Mattarneh, H., Ismail, R., Rawashdeh, A., Aljamal, M., & Dahim, M. (2024). Development of permittivity sensor for advanced in situ testing and evaluation of building material. 2024 21st International Multi-Conference on Systems, Signals & Devices (SSD), 120, 164–169. doi:10.1109/ssd61670.2024.10548329.
Malkawi, A. B., Nuruddin, M. F., Fauzi, A., Al-Mattarneh, H., & Mohammed, B. S. (2017). Effect of plasticizers and water on properties of HCFA geopolymers. Key Engineering Materials, 733 KEM, 76–79. doi:10.4028/www.scientific.net/KEM.733.76.
Abdullahi, M., Al-Mattarneh, H. M. A., & Mohammed, B. S. (2009). Equations for mix design of structural lightweight concrete. European Journal of Scientific Research, 31(1), 132–141.
Zain, M. F. M., Karim, M. R., Islam, M. N., Hossain, M. M., Jamil, M., & Al-Mattarneh, H. M. A. (2015). Prediction of strength and slump of silica fume incorporated high-performance concrete. Asian Journal of Scientific Research, 8(3), 264–277. doi:10.3923/ajsr.2015.264.277.
Monjardin, C. E. F., Power, C., Senoro, D. B., & De Jesus, K. L. M. (2023). Application of Machine Learning for Prediction and Monitoring of Manganese Concentration in Soil and Surface Water. Water (Switzerland), 15(13), 2318. doi:10.3390/w15132318.
Pham, B. T., Singh, S. K., & Ly, H. B. (2020). Using artificial neural network (ANN) for prediction of soil coefficient of consolidation. Vietnam Journal of Earth Sciences, 42(4), 311–319. doi:10.15625/0866-7187/42/4/15008.
Ayoubi, S., Pilehvar, A., Mokhtari, P., & L., K. (2011). Application of Artificial Neural Network (ANN) to Predict Soil Organic Matter Using Remote Sensing Data in Two Ecosystems. Biomass and Remote Sensing of Biomass, Intech open, London, United Kingdom. doi:10.5772/18956.
Carvalho, M. G., Barreto, E. M. do R., Ferreira, J. A. da C., França, F. A. N. de, & Freitas Neto, O. de. (2022). Applications of artificial intelligence in the determination of soil shear strength parameters: a systematic mapping of the literature. Research, Society and Development, 11(1), e27711124506. doi:10.33448/rsd-v11i1.24506.
Negiş, H. (2024). Using Models and Artificial Neural Networks to Predict Soil Compaction Based on Textural Properties of Soils under Agriculture. Agriculture (Switzerland), 14(1), 47. doi:10.3390/agriculture14010047.
Li, B., You, Z., Ni, K., & Wang, Y. (2024). Prediction of Soil Compaction Parameters Using Machine Learning Models. Applied Sciences (Switzerland), 14(7), 2716. doi:10.3390/app14072716.
Wrzesiński, G., & Markiewicz, A. (2022). Article Prediction of Permeability Coefficient k in Sandy Soils Using ANN. Sustainability (Switzerland), 14(11), 6736. doi:10.3390/su14116736.
Bieganowski, A., Józefaciuk, G., Bandura, L., Guz, Ł., Łagód, G., & Franus, W. (2018). Evaluation of hydrocarbon soil pollution using e-nose. Sensors (Switzerland), 18(8), 2463. doi:10.3390/s18082463.
Han, H., Choi, C., Kim, J., Morrison, R. R., Jung, J., & Kim, H. S. (2021). Multiple-depth soil moisture estimates using artificial neural network and long short-term memory models. Water (Switzerland), 13(18), 2584. doi:10.3390/w13182584.
Wang, Z., Zhang, W., & He, Y. (2023). Soil Heavy-Metal Pollution Prediction Methods Based on Two Improved Neural Network Models. Applied Sciences (Switzerland), 13(21), 11647. doi:10.3390/app132111647.
Hippel, A. V. (1954). Dielectric materials and applications. Artech House, London, United Kingdom.
Pandey, G., Weber, R. J., & Kumar, R. (2018). Agricultural Cyber-Physical System: In-Situ Soil Moisture and Salinity Estimation by Dielectric Mixing. IEEE Access, 6, 43179–43191. doi:10.1109/access.2018.2862634.
Mironov, V. L., Kosolapova, L. G., & Fomin, S. V. (2009). Physically and mineralogically based spectroscopic dielectric model for moist soils. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2059–2070. doi:10.1109/TGRS.2008.2011631.
Zhang, L., Meng, Q., Hu, D., Zhang, Y., Yao, S., & Chen, X. (2020). Comparison of different soil dielectric models for microwave soil moisture retrievals. International Journal of Remote Sensing, 41(8), 3054–3069. doi:10.1080/01431161.2019.1698077.
Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 9(4), 341–351. doi:10.1063/1.1750906.
Hong, T., Tang, Z., Zhou, Y., Zhu, H., & Huang, K. (2019). Dielectric relaxation of interacting/polarizable polar molecules with linear reaction dynamics in a weak alternating field. Chemical Physics Letters, 727, 66–71. doi:10.1016/j.cplett.2019.04.053.
Umoh, G. V., Leal-Perez, J. E., Olive-Méndez, S. F., González-Hernández, J., Mercader-Trejo, F., Herrera-Basurto, R., Auciello, O., & Hurtado-Macias, A. (2022). Complex dielectric function, Cole-Cole, and optical properties evaluation in BiMnO3 thin-films by Valence Electron Energy Loss Spectrometry (VEELS) analysis. Ceramics International, 48(15), 22182–22187. doi:10.1016/j.ceramint.2022.04.212.
Chenaf, D., & Amara N. (2001). Time domain Reflectometery for the Characteristisation of Diesel Contaminated Soils. Proceedings TDR 2001, Second International Symposium and Workshop on Time Domain Reflectometry for innovative Geotechnical Applications, 5-7 September, 2001, Northwestern University in Evanston, Illinois, United States.
Sihvola, A. (1999). Electromagnetic Mixing Formulas and Applications. Electromagnetic Mixing Formulas and Applications. The Institution of Engineering and Technology, London, United Kingdom. doi:10.1049/pbew047e.
Birchak, J. R., Gardner, C. G., Hipp, J. E., & Victor, J. M. (1974). High Dielectric Constant Microwave Probes for Sensing Soil Moisture. Proceedings of the IEEE, 62(1), 93–98. doi:10.1109/PROC.1974.9388.
Looyenga, H. (1965). Dielectric constants of heterogeneous mixtures. Physica, 31(3), 401–406. doi:10.1016/0031-8914(65)90045-5.
Zakri, T., Laurent, J. P., & Vauclin, M. (1998). Theoretical evidence for “Lichtenecker’s mixture formulae” based on the effective medium theory. Journal of Physics D: Applied Physics, 31(13), 1589–1594. doi:10.1088/0022-3727/31/13/013.
Topp, G. C. (2003). State of the art of measuring soil water content. Hydrological Processes, 17(14), 2993–2996. doi:10.1002/hyp.5148.
Woodhead, I. M., Buchan, G. D., Christie, J. H., & Irie, K. (2003). A General Dielectric Model for Time Domain Reflectometry. Biosystems Engineering, 86(2), 207–216. doi:10.1016/S1537-5110(03)00131-4.
Tenza-Abril, A. J., Benavente, D., Pla, C., Baeza-Brotons, F., Valdes-Abellan, J., & Solak, A. M. (2020). Statistical and experimental study for determining the influence of the segregation phenomenon on physical and mechanical properties of lightweight concrete. Construction and Building Materials, 238, 117642. doi:10.1016/j.conbuildmat.2019.117642.
Nuruddin, M., Malkawi, A., Fauzi, A., Mohammed, B., & Al-Mattarneh, H. (2016). Effects of alkaline solution on the microstructure of HCFA geopolymers. Engineering Challenges for Sustainable Future, CRC Press, Boca Raton, United States. doi:10.1201/b21942-102.
Yasin, A. A., Awwad, M. T., Malkawi, A. B., Maraqa, F. R., & Alomari, J. A. (2023). Optimization of Tuff Stones Content in Lightweight Concrete Using Artificial Neural Networks. Civil Engineering Journal (Iran), 9(11), 2823–2833. doi:10.28991/CEJ-2023-09-11-013.
Najjar, Y. M., & Ali, H. E. (1998). CPT-based liquefaction potential assessment: A neuronet approach. Geotechnical Earthquake Engineering and Soil Dynamics III, 1, 542–553.
Sivakugan, N., Eckersley, J., & Li, H. (1998). Settlement predictions using neural networks. Australian Civil Engineering Transactions, 40, 49-52.
Sinha, S. K., & Wang, M. C. (2008). Artificial neural network prediction models for soil compaction and permeability. Geotechnical and Geological Engineering, 26(1), 47–64. doi:10.1007/s10706-007-9146-3.
Ismail, R. (2024). Improving wastewater treatment plant performance: an ANN-based predictive model for managing average daily overflow and resource allocation optimization using Tabu search. Asian Journal of Civil Engineering, 25(2), 1427–1441. doi:10.1007/s42107-023-00853-5.
DOI: 10.28991/CEJ-2024-010-09-018
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Hashem Al-Mattarneh

This work is licensed under a Creative Commons Attribution 4.0 International License.