Influence of Temperature on the Viscoelastic Behavior and Durability of Flexible Pavements
Abstract
Doi: 10.28991/CEJ-2024-010-07-06
Full Text: PDF
Keywords
References
Guha, S., & Hossain, K. (2022). An economic approach to road condition assessment using road user feedback: A new model and its application. International Journal of Pavement Engineering, 24(2), 2022673. doi:10.1080/10298436.2021.2022673.
Yang, B., Yang, S., Ye, Z., Zhou, X., & Wang, L. (2024). Optimization of Anti-Skid and Noise Reduction Performance of Cement Concrete Pavement with Different Grooved and Dragged Textures. Processes, 12(4), 800. doi:10.3390/pr12040800.
Yang, X., Zhang, J., Liu, W., Jing, J., Zheng, H., & Xu, W. (2024). Automation in road distress detection, diagnosis and treatment. Journal of Road Engineering, 4(1), 1–26. doi:10.1016/j.jreng.2024.01.005.
Singh, A. K., & Sahoo, J. P. (2021). Rutting prediction models for flexible pavement structures: A review of historical and recent developments. Journal of Traffic and Transportation Engineering, 8(3), 315–338. doi:10.1016/j.jtte.2021.04.003.
Bencharhi, O., & Baba, K. (2023). A New Approach for Reinforcing the Pavement Subjected to Solicitations and Admissible Deformations. NanoWorld Journal, 9, 107– 114. doi:10.17756/nwj.2023-s2-019.
Khlifati, O., & Baba, K. (2023). Concrete Pavement Crack Detection and Classification Using Deep Convolutional Neural Network with Grid Search Optimization. NanoWorld Journal, 9, 472– 477. doi:10.17756/nwj.2023-s2-080.
Ayasrah, U. B., Tashman, L., AlOmari, A., & Asi, I. (2023). Development of a temperature prediction model for flexible pavement structures. Case Studies in Construction Materials, 18, 1697. doi:10.1016/j.cscm.2022.e01697.
Xu, J., Li, N., & Xu, T. (2022). Temperature Changes of Interlaminar Bonding Layer in Different Seasons and Effects on Mechanical Properties of Asphalt Pavement. International Journal of Pavement Research and Technology, 15(3), 589–605. doi:10.1007/s42947-021-00039-9.
Pham, P. N., Tran, T. T. T., Nguyen, P., Truong, T. A., Siddique, R., Liu, Y., & Zhuge, Y. (2023). Rubberized cement-stabilized aggregates: Mechanical performance, thermal properties, and effect on temperature fluctuation in road pavements. Transportation Geotechnics, 40, 100982. doi:10.1016/j.trgeo.2023.100982.
Ling, J., Ren, L., Tian, Y., Gao, J., & Man, L. (2021). Analysis of airfield composite pavement rutting using full-scale accelerated pavement testing and finite element method. Construction and Building Materials, 303, 124528. doi:10.1016/j.conbuildmat.2021.124528.
Ahmed, F., Thompson, J., Kim, D., Huynh, N., & Carroll, E. (2023). Evaluation of pavement service life using AASHTO 1972 and mechanistic-empirical pavement design guides. International Journal of Transportation Science and Technology, 12(1), 46–61. doi:10.1016/j.ijtst.2021.11.004.
El-Ashwah, A. S., El-Badawy, S. M., & Gabr, A. R. (2021). A simplified mechanistic-empirical flexible pavement design method for moderate to hot climate regions. Sustainability (Switzerland), 13(19), 10760. doi:10.3390/su131910760.
Yan, C., Zhang, Y., & Bahia, H. U. (2022). Predicting rutting performance of asphalt mixture from binder properties and mixture design variables. Road Materials and Pavement Design, 23(1), 62–79. doi:10.1080/14680629.2020.1820890.
Awosanya, D. O., Murana, A. A., & Olowosulu, A. T. (2023). Simplified Mechanistic – Empirical Analysis of Flexible Pavement. Fudma Journal of Sciences, 7(2), 176–187. doi:10.33003/fjs-2023-0702-1727.
Bostancıoğlu, M. (2023). Functional Grading and Mechanistic–Empirical Analysis of Sections Proposed by AASHTO-93 Method. Arabian Journal for Science and Engineering, 48(10), 13323-13335. doi:10.1007/s13369-023-07815-8.
Charhi, O. B., & Baba, K. (2023). Modeling the Fatigue Behavior of Pavement Using the Finite Element Method. Advances in Research in Geosciences, Geotechnical Engineering, and Environmental Science, 368–379. doi:10.1007/978-3-031-49345-4_35.
Levenberg, E., Hesthaven, M., & Andersen, S. (2024). Mechanistic Code for Asphalt Pavements Loaded by Farming Vehicles. Transportation Research Record, 2678(2), 469–480. doi:10.1177/03611981231175154.
Gkyrtis, K., Plati, C., & Loizos, A. (2022). Mechanistic Analysis of Asphalt Pavements in Support of Pavement Preservation Decision-Making. Infrastructures, 7(5), 61. doi:10.3390/infrastructures7050061.
Alimohammadi, H., Zheng, J., Schaefer, V. R., Siekmeier, J., & Velasquez, R. (2021). Evaluation of geogrid reinforcement of flexible pavement performance: A review of large-scale laboratory studies. Transportation Geotechnics, 27. doi:10.1016/j.trgeo.2020.100471.
Swarna, S. T., & Hossain, K. (2022). Climate change impact and adaptation for highway asphalt pavements: a literature review. Canadian Journal of Civil Engineering, 49(7), 1109–1120. doi:10.1139/cjce-2021-0209.
Liu, Z., Balieu, R., & Kringos, N. (2022). Integrating sustainability into pavement maintenance effectiveness evaluation: A systematic review. Transportation Research Part D: Transport and Environment, 104. doi:10.1016/j.trd.2022.103187.
Shtayat, A., Moridpour, S., Best, B., & Rumi, S. (2022). An Overview of Pavement Degradation Prediction Models. Journal of Advanced Transportation, 2022, 1–15. doi:10.1155/2022/7783588.
ai Nguyen, H. T., Do, T.-T., Tran, V.-T., Phan, T.-N., Pham, T.-A., & Nguyen, M. L. (2021). Determination of creep compliance of asphalt mixtures at intermediate and high temperature using creep-recovery test. Road Materials and Pavement Design, 22(sup1), S514–S535. doi:10.1080/14680629.2021.1908407.
García Mainieri, J. J., Singhvi, P., Ozer, H., Sharma, B. K., & Al-Qadi, I. L. (2023). Linear and nonlinear viscoelastic parameters of asphalt binders modified with softening agents. Road Materials and Pavement Design, 24(9), 2225–2244. doi:10.1080/14680629.2022.2131603.
Zhang, Z., Sun, J., Huang, Z., Wang, F., Jia, M., Lv, W., & Ye, J. (2021). A laboratory study of epoxy/polyurethane modified asphalt binders and mixtures suitable for flexible bridge deck pavement. Construction and Building Materials, 274, 122084. doi:10.1016/j.conbuildmat.2020.122084.
Sukhija, M., & Saboo, N. (2021). A comprehensive review of warm mix asphalt mixtures-laboratory to field. Construction and Building Materials, 274, 122084. doi:10.1016/j.conbuildmat.2020.121781.
Luo, Y., Wu, H., Song, W., Yin, J., Zhan, Y., Yu, J., & Abubakar Wada, S. (2023). Thermal fatigue and cracking behaviors of asphalt mixtures under different temperature variations. Construction and Building Materials, 369. doi:10.1016/j.conbuildmat.2023.130623.
Ren, G., Shen, A., Wu, H., Pan, H., Deng, S., & Wang, L. (2024). Mechanical response of flexible asphalt pavement under large temperature difference and temperatures during four seasons. Construction and Building Materials, 437, 136967. doi:10.1016/j.conbuildmat.2024.136967.
Gong, Y., Wu, S., Zhang, Y., Pang, Y., & Ma, Y. (2022). Investigation of the High-Temperature and Rheological Properties for Asphalt Sealant Modified by SBS and Rubber Crumb. Polymers, 14(13), 2558. doi:10.3390/polym14132558.
DOI: 10.28991/CEJ-2024-010-07-06
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 OMAR BENCHARHI
This work is licensed under a Creative Commons Attribution 4.0 International License.