Influence of Temperature on the Viscoelastic Behavior and Durability of Flexible Pavements

Omar Ben Charhi, Khadija Baba

Abstract


This study meticulously examines the impact of temperature variations on the viscoelastic characteristics of flexible pavements composed of mineral aggregates and bituminous binders. The primary objective is to understand how temperature fluctuations affect the structure and durability of these pavements, designed to withstand traffic loads while absorbing stresses induced by weather conditions. The methodology involves a thorough analysis of a range of temperatures from T1 to T4, assessing their effects on road rutting and the longevity of pavement infrastructure. Through a detailed analytical approach, the research investigates the viscoelastic behavior of bituminous mixes, which display viscous and elastic properties that change with temperature. The findings reveal significant correlations between temperature variations and the performance of flexible pavements, offering insights into their structural resilience and durability under different climatic conditions. This research introduces a novel approach to managing flexible pavement infrastructure by enhancing our understanding of the temperature-induced viscoelastic response. The improvement lies in the precise quantification of temperature impacts, which can inform better maintenance and design strategies for flexible pavements. Ultimately, this leads to more resilient and long-lasting road surfaces, addressing the critical need for durable infrastructure in changing weather patterns.

 

Doi: 10.28991/CEJ-2024-010-07-06

Full Text: PDF


Keywords


Flexible Pavements; Temperature Variations; Road Rutting; Viscoelastic Behavior; Durable Infrastructure.

References


Guha, S., & Hossain, K. (2022). An economic approach to road condition assessment using road user feedback: A new model and its application. International Journal of Pavement Engineering, 24(2), 2022673. doi:10.1080/10298436.2021.2022673.

Yang, B., Yang, S., Ye, Z., Zhou, X., & Wang, L. (2024). Optimization of Anti-Skid and Noise Reduction Performance of Cement Concrete Pavement with Different Grooved and Dragged Textures. Processes, 12(4), 800. doi:10.3390/pr12040800.

Yang, X., Zhang, J., Liu, W., Jing, J., Zheng, H., & Xu, W. (2024). Automation in road distress detection, diagnosis and treatment. Journal of Road Engineering, 4(1), 1–26. doi:10.1016/j.jreng.2024.01.005.

Singh, A. K., & Sahoo, J. P. (2021). Rutting prediction models for flexible pavement structures: A review of historical and recent developments. Journal of Traffic and Transportation Engineering, 8(3), 315–338. doi:10.1016/j.jtte.2021.04.003.

Bencharhi, O., & Baba, K. (2023). A New Approach for Reinforcing the Pavement Subjected to Solicitations and Admissible Deformations. NanoWorld Journal, 9, 107– 114. doi:10.17756/nwj.2023-s2-019.

Khlifati, O., & Baba, K. (2023). Concrete Pavement Crack Detection and Classification Using Deep Convolutional Neural Network with Grid Search Optimization. NanoWorld Journal, 9, 472– 477. doi:10.17756/nwj.2023-s2-080.

Ayasrah, U. B., Tashman, L., AlOmari, A., & Asi, I. (2023). Development of a temperature prediction model for flexible pavement structures. Case Studies in Construction Materials, 18, 1697. doi:10.1016/j.cscm.2022.e01697.

Xu, J., Li, N., & Xu, T. (2022). Temperature Changes of Interlaminar Bonding Layer in Different Seasons and Effects on Mechanical Properties of Asphalt Pavement. International Journal of Pavement Research and Technology, 15(3), 589–605. doi:10.1007/s42947-021-00039-9.

Pham, P. N., Tran, T. T. T., Nguyen, P., Truong, T. A., Siddique, R., Liu, Y., & Zhuge, Y. (2023). Rubberized cement-stabilized aggregates: Mechanical performance, thermal properties, and effect on temperature fluctuation in road pavements. Transportation Geotechnics, 40, 100982. doi:10.1016/j.trgeo.2023.100982.

Ling, J., Ren, L., Tian, Y., Gao, J., & Man, L. (2021). Analysis of airfield composite pavement rutting using full-scale accelerated pavement testing and finite element method. Construction and Building Materials, 303, 124528. doi:10.1016/j.conbuildmat.2021.124528.

Ahmed, F., Thompson, J., Kim, D., Huynh, N., & Carroll, E. (2023). Evaluation of pavement service life using AASHTO 1972 and mechanistic-empirical pavement design guides. International Journal of Transportation Science and Technology, 12(1), 46–61. doi:10.1016/j.ijtst.2021.11.004.

El-Ashwah, A. S., El-Badawy, S. M., & Gabr, A. R. (2021). A simplified mechanistic-empirical flexible pavement design method for moderate to hot climate regions. Sustainability (Switzerland), 13(19), 10760. doi:10.3390/su131910760.

Yan, C., Zhang, Y., & Bahia, H. U. (2022). Predicting rutting performance of asphalt mixture from binder properties and mixture design variables. Road Materials and Pavement Design, 23(1), 62–79. doi:10.1080/14680629.2020.1820890.

Awosanya, D. O., Murana, A. A., & Olowosulu, A. T. (2023). Simplified Mechanistic – Empirical Analysis of Flexible Pavement. Fudma Journal of Sciences, 7(2), 176–187. doi:10.33003/fjs-2023-0702-1727.

Bostancıoğlu, M. (2023). Functional Grading and Mechanistic–Empirical Analysis of Sections Proposed by AASHTO-93 Method. Arabian Journal for Science and Engineering, 48(10), 13323-13335. doi:10.1007/s13369-023-07815-8.

Charhi, O. B., & Baba, K. (2023). Modeling the Fatigue Behavior of Pavement Using the Finite Element Method. Advances in Research in Geosciences, Geotechnical Engineering, and Environmental Science, 368–379. doi:10.1007/978-3-031-49345-4_35.

Levenberg, E., Hesthaven, M., & Andersen, S. (2024). Mechanistic Code for Asphalt Pavements Loaded by Farming Vehicles. Transportation Research Record, 2678(2), 469–480. doi:10.1177/03611981231175154.

Gkyrtis, K., Plati, C., & Loizos, A. (2022). Mechanistic Analysis of Asphalt Pavements in Support of Pavement Preservation Decision-Making. Infrastructures, 7(5), 61. doi:10.3390/infrastructures7050061.

Alimohammadi, H., Zheng, J., Schaefer, V. R., Siekmeier, J., & Velasquez, R. (2021). Evaluation of geogrid reinforcement of flexible pavement performance: A review of large-scale laboratory studies. Transportation Geotechnics, 27. doi:10.1016/j.trgeo.2020.100471.

Swarna, S. T., & Hossain, K. (2022). Climate change impact and adaptation for highway asphalt pavements: a literature review. Canadian Journal of Civil Engineering, 49(7), 1109–1120. doi:10.1139/cjce-2021-0209.

Liu, Z., Balieu, R., & Kringos, N. (2022). Integrating sustainability into pavement maintenance effectiveness evaluation: A systematic review. Transportation Research Part D: Transport and Environment, 104. doi:10.1016/j.trd.2022.103187.

Shtayat, A., Moridpour, S., Best, B., & Rumi, S. (2022). An Overview of Pavement Degradation Prediction Models. Journal of Advanced Transportation, 2022, 1–15. doi:10.1155/2022/7783588.

ai Nguyen, H. T., Do, T.-T., Tran, V.-T., Phan, T.-N., Pham, T.-A., & Nguyen, M. L. (2021). Determination of creep compliance of asphalt mixtures at intermediate and high temperature using creep-recovery test. Road Materials and Pavement Design, 22(sup1), S514–S535. doi:10.1080/14680629.2021.1908407.

García Mainieri, J. J., Singhvi, P., Ozer, H., Sharma, B. K., & Al-Qadi, I. L. (2023). Linear and nonlinear viscoelastic parameters of asphalt binders modified with softening agents. Road Materials and Pavement Design, 24(9), 2225–2244. doi:10.1080/14680629.2022.2131603.

Zhang, Z., Sun, J., Huang, Z., Wang, F., Jia, M., Lv, W., & Ye, J. (2021). A laboratory study of epoxy/polyurethane modified asphalt binders and mixtures suitable for flexible bridge deck pavement. Construction and Building Materials, 274, 122084. doi:10.1016/j.conbuildmat.2020.122084.

Sukhija, M., & Saboo, N. (2021). A comprehensive review of warm mix asphalt mixtures-laboratory to field. Construction and Building Materials, 274, 122084. doi:10.1016/j.conbuildmat.2020.121781.

Luo, Y., Wu, H., Song, W., Yin, J., Zhan, Y., Yu, J., & Abubakar Wada, S. (2023). Thermal fatigue and cracking behaviors of asphalt mixtures under different temperature variations. Construction and Building Materials, 369. doi:10.1016/j.conbuildmat.2023.130623.

Ren, G., Shen, A., Wu, H., Pan, H., Deng, S., & Wang, L. (2024). Mechanical response of flexible asphalt pavement under large temperature difference and temperatures during four seasons. Construction and Building Materials, 437, 136967. doi:10.1016/j.conbuildmat.2024.136967.

Gong, Y., Wu, S., Zhang, Y., Pang, Y., & Ma, Y. (2022). Investigation of the High-Temperature and Rheological Properties for Asphalt Sealant Modified by SBS and Rubber Crumb. Polymers, 14(13), 2558. doi:10.3390/polym14132558.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-07-06

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 OMAR BENCHARHI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message