The Behavior of the Tunnel Reinforced with Geogrid in Soft Soil Under the Effect of Axial Load

Zahraa H. Faleih, Ahmed S. A. Al-Gharbawi, Husam H. Baqir

Abstract


The soft soil's poor tensile strength requires reinforcing to increase bearing capacity, improve stability, and reduce settlements. This study assessed the efficacy of using geogrid layers to enhance and secure the soil surrounding tunnels. enabling the tunnel to endure pressure, particularly during excavation. The utilization of geogrids in soil reinforcement has experienced a substantial rise as a result of their consistent dimensions and exceptional tensile strength. To quantify the exerted force transferred to the tunnel, during this study utilized various testing tools, including a soil container, a steel loading frame, data loggers, a 0.5-ton load cell, and a miniature pressure cell. The vertical loads are applied by utilizing a hydraulic jack. A series of eleven tests were conducted on the tunnel at two depths of 1.5D and 2.5D, where D is the tunnel's diameter. The different models of geogrid layers showed that using two layers of geogrid at the first dimension, 0.5B and 1B from the base, led to a significant increase in tunnel stability. Two layers of reinforcement were used in both directions, giving the soil a high bearing capacity for the loads applied to the tunnel. This resulted in an improvement, a 1.65 in 1.5D and a 1.82 in 2.5D. The pressure above the pipe decreased by approximately 7.1kPa at the first tunnel depth and about 3.5kpa at the second depth. In conclusion, the study found the geogrid improves the stability of the tunnel by equally distributing loads and minimizing stress concentrations, hence decreasing the chances of collapses or deformations.

 

Doi: 10.28991/CEJ-2024-010-08-04

Full Text: PDF


Keywords


Soft Soil; Tunnel; Geogrid; Axial Load; Improvement of Soil.

References


Al-Gharbawi, A. S.A., & A.A. Rajab, N. (2016). Comparison between Sand Columns and Sand Columns Stabilized with Lime or Cement with Stone Columns Embedded in Soft Soil. Engineering and Technology Journal, 34(15), 2805–2815. doi:10.30684/etj.34.15a.3.

Baqir, H. H., Al-Soudany, K. Y. H., & Al-Gharbawi, A. S. A. (2020). Clay Columns Stabilized with Fly Ash in Soft Soils. IOP Conference Series: Materials Science and Engineering, 737(1), 737. doi:10.1088/1757-899X/737/1/012095.

Al Saudi, N. K. S., Al-Gharbawi, A. S. A., Rajab, N. A. A., & Tanyrbergenova, G. (2015). Sand and stone columns in soft soil at different relative densities. 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, 2121–2126. doi:10.3208/jgssp.IRQ-05.

Vidal, H. (1969). The Principle of Reinforced Earth. Highway Research Record, Washington, United States.

Das, B. M., & Shin, E. C. (1994). Strip foundation on geogrid-reinforced clay: Behavior under cyclic loading. Geotextiles and Geomembranes, 13(10), 657–667. doi:10.1016/0266-1144(94)90066-3.

Karim, H. H., Samueel, Z. W., & Jassem, A. H. (2020). Behaviour of soft clayey soil improved by fly ash and geogrid under cyclic loading. Civil Engineering Journal (Iran), 6(2), 225–237. doi:10.28991/cej-2020-03091466.

Hashemi, M., Marandi, S. M., & Vahidi, M. (2022). The Effect of Heat on the Settlement Properties of Cement-stabilized Clay Soil. International Journal of Engineering, Transactions B: Applications, 35(5), 1056–1063. doi:10.5829/IJE.2022.35.05B.20.

Al-Gharbawi, A. S. A., Fattah, M. Y., & Abduhussain, S. A. (2024). Behavior of soil reinforced with micropiles. Open Engineering, 14(1), 14. doi:10.1515/eng-2022-0563.

Abdullah Ahmed, A. (2014). Effect of Tunneling in Cohesive Soils on Existing Structures. Engineering and Technology Journal, 32(10), 2475–2490. doi:10.30684/etj.32.10a.12.

Orumchi, H., & Mojallal, M. (2017). Shear Strength Design of a Mechanized Tunneling Grout Mix: Case Study of the Tehran Subway Line 6 Project. Transportation Infrastructure Geotechnology, 4(1), 18–36. doi:10.1007/s40515-017-0037-7.

Al-Farhan, Z. F., Al-Obaydi, M. A., & Al-Saffar, Q. N. (2022). Tunnel-Soil-Structure Interaction Under Seismic Load. Geotechnical Engineering and Sustainable Construction - Sustainable Geotechnical Engineering, 91–102. doi:10.1007/978-981-16-6277-5_8.

Meng, Y., & Xu, C. (2024). Effects of freeze-thaw cycles on the tensile properties of geogrids and shear behavior of geogrid-soil interface. IOP Conference Series: Earth and Environmental Science, 1335(1), 012003. doi:10.1088/1755-1315/1335/1/012003.

Foda, T., Ibrahim, H. M., Abdelkader, A., & Abu el-Hassan, K. (2024). Innovative Approaches to Soft Clay Stabilization: Utilizing Sustainable Materials for the Stone Column Technique. Geotechnical and Geological Engineering, 1–25. doi:10.1007/s10706-024-02834-0.

Al-Saoudi, N., Joni, H.H., Al-Gharbawi, A.S.A. (2014). Single Sand Column Stabilized by Lime Embedded in Soft Soil. Engineering and Technology Journal, 32(4), 1028–1037. doi:10.30684/etj.32.4a.16.

Al-Haddad, S. A., Fattah, M. Y., & Al-Ani, F. H. (2024). Protection of buried pipeline using geosynthetics–a review. Geomechanics and Geoengineering, 19(4), 503–518. doi:10.1080/17486025.2023.2288933.

Shaker, Z. H. (2013). Stresses analysis using finite elements method around tunnels construction stages. Master Thesis, University of Technology, Baghdad, Iraq.

Al-Khalali, H. H. M. (2015). Using geocell and geogrid reinforcement to improve performance of buried piles in sandy soil. Ph.D. Thesis, University of Baghdad, Iraq.

Mohammed, S. A., Naimi, S., & AbdulKareem, A. H. (2022). The effect of geogrid reinforcement of embankment over soft foundation. Periodicals of Engineering and Natural Sciences (PEN), 10(6), 5. doi:10.21533/pen.v10i6.3345.

Al-Kalali, H. H. M., Fattah, M. Y., & Zbar, B. S. (2020). Effect of Reinforcement Width on the Behavior of Buried Pipe in Sandy Soil. Key Engineering Materials, 857, 56–65. doi:10.4028/www.scientific.net/kem.857.56.

Jebur, F., Fattah, M., & Abduljabbar, A. (2021). Function and Application of Geogrid in Flexible Pavement under Dynamic Load. Engineering and Technology Journal, 39(8), 1231–1241. doi:10.30684/etj.v39i8.1771.

Mahfouz, N. A., Ali, A. H., Mohamed, M. H., & Haggag, H. A. (2024). Experimental analyses of high-filled cut-and-cover tunnel for reduction of the earth pressure. HBRC Journal, 20(1), 643–659. doi:10.1080/16874048.2024.2363731.

Khan, M. A., Sadique, Md. R., Harahap, I. H., Zaid, M., & Alam, M. M. (2021). Static and Dynamic Analysis of the Shielded Tunnel in Alluvium Soil with 2D FEM Model. Transportation Infrastructure Geotechnology, 9(1), 73–100. doi:10.1007/s40515-021-00160-z.

Al-Haddad, S. A., Al-Ani, F. H., & Fattah, M. Y. (2022). Effect of Using Plastic Waste Bottles on Soil Response above Buried Pipes under Static Loads. Applied Sciences (Switzerland), 12(23), 12304. doi:10.3390/app122312304.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-04

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Zahraa H. Faleih, Ahmed S.A. Al-Gharbawi, Husam H. Baqir

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message