Effectiveness of Different Configurations of Ferrocement Retrofitting for Seismic Protection of Confined Masonry: A Numerical Study

Ahmad B. Habieb, Muhammad R. Hidayat, Wahyuniarsih Sutrisno, Nurmurat Kandymov, Gabriele Milani

Abstract


A ferrocement layer, which consists of a wire mesh and cement mortar, is a popular retrofitting method for existing structural elements, particularly wall or slab panels. This paper presents a study on the effectiveness of different configurations of ferrocement for seismic retrofitting of confined masonry through finite element analysis. The masonry panel was modeled using expanded brick-unit elements, where the element was expanded in size by as much as half of the mortar thickness, and an interacting zero-thickness interface was applied to mimic the elastic-plastic and damage behavior during tension, shear, and compression. The concrete damage plasticity (CDP) model was used to model the confining reinforced concrete frame and overlay mortar in the ferrocement layer, and the reinforcing bars and wire mesh were modeled using elastic-plastic behavior. In the present numerical study, nine models were subjected to cyclic and pushover shear test simulations, considering the effects of the number of ferrocement layers and the wire mesh orientation. The volumetric ratio of the wire mesh to the masonry (ρwm) ranged from 0.48% to 1.92%, whereas the ratio of the mortar overlay to the masonry (ρmo) varies from 10.42% to 41.66%. Based on the increase in the lateral strength, the model with the largest volume of the ferrocement layer exhibited the largest increase in strength. However, the most cost-effective retrofitting configuration was presented by model DS-1-45, in which a single layer of ferrocement was applied on both sides of the wall using 45° of wire mesh orientation. The DS-1-45 model provided a lateral strength increase of more than 6 times compared to the original unreinforced model.

 

Doi: 10.28991/CEJ-2024-010-09-02

Full Text: PDF


Keywords


Ferrocement; Seismic Retrofitting; Earthquake-Risk Mitigation; Strengthening; Masonry; Finite Element Analysis; Expanded Unit Model; Concrete Damage Plasticity.

References


Xekalakis, G., Pitilakis, D., Zuccaro, G., & Christou, P. (2023). Parametric Analysis of Horizontal Static and Dynamic Behavior in Different Types of Masonry Structures. Civil Engineering Journal (Iran), 9(10), 2578–2591. doi:10.28991/CEJ-2023-09-10-015.

Debnath, P., Halder, L., & Chandra Dutta, S. (2022). Damage survey and seismic vulnerability assessment of unreinforced masonry structures in low-intensity Ambasa earthquake of northeast India. Structures, 44, 372–388. doi:10.1016/j.istruc.2022.08.005.

Brignola, A., Pampanin, S., & Podestà, S. (2009). Evaluation and control of the in-plane stiffness of timber floors for the performance-based retrofit of URM buildings. Bulletin of the New Zealand Society for Earthquake Engineering, 42(3), 204–221. doi:10.5459/bnzsee.42.3.204-221.

A. Gumilang, S., & Rusli, M. (2021). Seismic performance of earthquake resistant simple residential confined masonry house structure based on permen PUPR No.5 of 2016 specification. IOP Conference Series: Earth and Environmental Science, 708(1), 12085. doi:10.1088/1755-1315/708/1/012085.

Habieb, A. B., Rofiussan, F. A., Irawan, D., Milani, G., Suswanto, B., Widodo, A., & Soegihardjo, H. (2023). Seismic Retrofitting of Indonesian Masonry Using Bamboo Strips: An Experimental Study. Buildings, 13(4), 854. doi:10.3390/buildings13040854.

Fikri, R., Dizhur, D., Walsh, K., & Ingham, J. (2019). Seismic performance of Reinforced Concrete Frame with Masonry Infill buildings in the 2010/2011 Canterbury, New Zealand earthquakes. Bulletin of Earthquake Engineering, 17(2), 737–757. doi:10.1007/s10518-018-0476-8.

Al-Chaar, G., Issa, M., & Sweeney, S. (2002). Behavior of Masonry-Infilled Nonductile Reinforced Concrete Frames. Journal of Structural Engineering, 128(8), 1055–1063. doi:10.1061/(asce)0733-9445(2002)128:8(1055).

Bruneau, M. (1994). State‐of‐the‐Art Report on Seismic Performance of Unreinforced Masonry Buildings. Journal of Structural Engineering, 120(1), 230–251. doi:10.1061/(asce)0733-9445(1994)120:1(230)

Toranzo-Dianderas, L. A., Restrepo, J. I., Carr, A. J., & Mander, J. B. (2004). Rocking confined masonry walls with hysteretic energy dissipators and shake-table validation. 13th World Conf. on Earthquake Engineering, 1-6 August, 2004, Vancouver, Canada.

Marques, R., & Lourenço, P. B. (2019). Structural behaviour and design rules of confined masonry walls: Review and proposals. Construction and Building Materials, 217, 137–155. doi:10.1016/j.conbuildmat.2019.04.266.

Celano, T., Argiento, L. U., Ceroni, F., & Casapulla, C. (2021). In-plane behaviour of masonry walls: Numerical analysis and design formulations. Materials, 14(19), 5780. doi:10.3390/ma14195780.

Sandoval, O. J., Takeuchi, C., Carrillo, J., & Barahona, B. (2021). Performance of unreinforced masonry panels strengthened with mortar overlays reinforced with welded wire mesh and transverse connectors. Construction and Building Materials, 267, 121054. doi:10.1016/j.conbuildmat.2020.121054.

Shermi, C., & Dubey, R. N. (2018). In-plane behaviour of unreinforced masonry panel strengthened with welded wire mesh and mortar. Construction and Building Materials, 178, 195–203. doi:10.1016/j.conbuildmat.2018.04.081.

Banerjee, S., Nayak, S., & Das, S. (2020). Improving the In-Plane Behavior of Brick Masonry Wallet Using PP Band and Steel Wire Mesh. Journal of Materials in Civil Engineering, 32(6). doi:10.1061/(asce)mt.1943-5533.0003159.

Warjri, T., Marbaniang, D. F., & Marthong, C. (2022). In-plane behaviour of masonry walls embedding with steel welded wire mesh overlay with mortar. Journal of Structural Integrity and Maintenance, 7(3), 177–187. doi:10.1080/24705314.2022.2048241.

Debnath, P., Chandra Dutta, S., & Mandal, P. (2023). Lateral behaviour of masonry walls with different types of brick bonds, aspect ratio and strengthening measures by polypropylene bands and wire mesh. Structures, 49, 623–639. doi:10.1016/j.istruc.2023.01.155.

De Santis, S., Casadei, P., De Canio, G., de Felice, G., Malena, M., Mongelli, M., & Roselli, I. (2016). Seismic performance of masonry walls retrofitted with steel reinforced grout. Earthquake Engineering & Structural Dynamics, 45(2), 229–251. doi:10.1002/eqe.2625.

Xin, R., & Ma, P. (2021). Experimental investigation on the in-plane seismic performance of damaged masonry walls repaired with grout-injected ferrocement overlay. Construction and Building Materials, 282, 122565. doi:10.1016/j.conbuildmat.2021.122565.

Saingam, P., Hlaing, H. H., Suwannatrai, R., Ejaz, A., Hussain, Q., Khan, K., & Joyklad, P. (2023). Enhancing the flexural behavior of brick masonry walls with ferrocement overlays and low-cost anchors. Case Studies in Construction Materials, 19, 2558. doi:10.1016/j.cscm.2023.e02558.

Deng, M., & Yang, S. (2020). Experimental and numerical evaluation of confined masonry walls retrofitted with engineered cementitious composites. Engineering Structures, 207, 110249. doi:10.1016/j.engstruct.2020.110249.

Umair, S. M., Numada, M., Amin, M. N., & Meguro, K. (2015). Fiber reinforced polymer and polypropylene composite retrofitting technique for masonry structures. Polymers, 7(5), 963–984. doi:10.3390/polym7050963.

Jang, H. S., An, J. H., Song, J. H., Son, S. H., Hong, Y. S., & Eun, H. C. (2022). Out-of-Plane Strengthening of Unreinforced Masonry Walls by Glass Fiber-Reinforced Polyurea. Civil Engineering Journal (Iran), 8(1), 145–154. doi:10.28991/CEJ-2022-08-01-011.

Chourasia, A., Singhal, S., & Parashar, J. (2019). Experimental investigation of seismic strengthening technique for confined masonry buildings. Journal of Building Engineering, 25, 100834. doi:10.1016/j.jobe.2019.100834.

Habieb, A. B., Valente, M., & Milani, G. (2019). Hybrid seismic base isolation of a historical masonry church using unbonded fiber reinforced elastomeric isolators and shape memory alloy wires. Engineering Structures, 196, 109281. doi:10.1016/j.engstruct.2019.109281.

Boni, C., & Royer-Carfagni, G. (2023). Transparent hybrid glass-steel bracing to improve the seismic capacity of historic buildings with colonnades. Engineering Structures, 278, 115522. doi:10.1016/j.engstruct.2022.115522.

Li, J., Wu, C., Hao, H., Su, Y., & Li, Z. X. (2017). A study of concrete slabs with steel wire mesh reinforcement under close-in explosive loads. International Journal of Impact Engineering, 110, 242–254. doi:10.1016/j.ijimpeng.2017.01.016.

Garg, A., Sageman-Furnas, A. O., Deng, B., Yue, Y., Grinspun, E., Pauly, M., & Wardetzky, M. (2014). Wire mesh design. ACM Transactions on Graphics, 33(4). doi:10.1145/2601097.2601106.

Miah, M. J., Miah, M. S., Alam, W. B., Lo Monte, F., & Li, Y. (2019). Strengthening of RC beams by ferrocement made with unconventional concrete. Magazine of Civil Engineering, 89(5), 94–105. doi:10.18720/MCE.89.8.

Scacco, J., Milani, G., & Lourenço, P. B. (2021). A micro-modeling approach for the prediction of TRM bond performance on curved masonry substrates. Composite Structures, 256, 113065. doi:10.1016/j.compstruct.2020.113065.

Anas, S. M., Alam, M., & Umair, M. (2022). Behavior and damage assessment of monolithic and non-monolithic braced masonry walls subjected to blast loadings using a detailed micro-modeling approach. International Journal of Masonry Research and Innovation.

Rotunno, T., Fagone, M., Ranocchiai, G., & Grande, E. (2022). Micro-mechanical FE modelling and constitutive parameters calibration of masonry panels strengthened with CFRP sheets. Composite Structures, 285, 115248. doi:10.1016/j.compstruct.2022.115248.

Moradi, N., Yazdani, M., Janbozorgi, F., & Hashemi, S. J. (2024). In-plane seismic performance of historical masonry walls with various brick bond patterns using micro-modeling approach. Asian Journal of Civil Engineering, 25(6), 4863–4876. doi:10.1007/s42107-024-01085-x.

Dhanasekar, M., & Haider, W. (2008). Explicit finite element analysis of lightly reinforced masonry shear walls. Computers and Structures, 86(1–2), 15–26. doi:10.1016/j.compstruc.2007.06.006.

Agnihotri, P., Singhal, V., & Rai, D. C. (2013). Effect of in-plane damage on out-of-plane strength of unreinforced masonry walls. Engineering Structures, 57, 1–11. doi:10.1016/j.engstruct.2013.09.004.

Minaie, E., Moon, F. L., & Hamid, A. A. (2014). Nonlinear finite element modeling of reinforced masonry shear walls for bidirectional loading response. Finite Elements in Analysis and Design, 84, 44–53. doi:10.1016/j.finel.2014.02.001.

Alforno, M., Monaco, A., Venuti, F., & Calderini, C. (2021). Validation of Simplified Micro-models for the Static Analysis of Masonry Arches and Vaults. International Journal of Architectural Heritage, 15(8), 1196–1212. doi:10.1080/15583058.2020.1808911.

Maccarini, H., Vasconcelos, G., Rodrigues, H., Ortega, J., & Lourenço, P. B. (2018). Out-of-plane behavior of stone masonry walls: Experimental and numerical analysis. Construction and Building Materials, 179, 430–452. doi:10.1016/j.conbuildmat.2018.05.216.

Tiberti, S., Acito, M., & Milani, G. (2016). Comprehensive FE numerical insight into Finale Emilia Castle behavior under 2012 Emilia Romagna seismic sequence: Damage causes and seismic vulnerability mitigation hypothesis. Engineering Structures, 117, 397–421. doi:10.1016/j.engstruct.2016.02.048.

Habieb, A. B., Valente, M., & Milani, G. (2019). Base seismic isolation of a historical masonry church using fiber reinforced elastomeric isolators. Soil Dynamics and Earthquake Engineering, 120, 127–145. doi:10.1016/j.soildyn.2019.01.022.

Shehu, R. (2021). Implementation of Pushover Analysis for Seismic Assessment of Masonry Towers: Issues and Practical Recommendations. Buildings, 11(2), 71. doi:10.3390/buildings11020071.

Guo, K., Habieb, A. B., & Milani, G. (2024). Simulation for a Low-Rise Masonry House Using Seismic Isolator with and Without S-shaped Steel Dampers. Recent Advances in Structural Health Monitoring and Engineering Structures. SHM&ES 2023, Lecture Notes in Civil Engineering, 460. Springer, Singapore. doi:10.1007/978-981-97-0399-9_9.

Park, K., Paulino, G. H., & Roesler, J. R. (2008). Determination of the kink point in the bilinear softening model for concrete. Engineering Fracture Mechanics, 75(13), 3806–3818. doi:10.1016/j.engfracmech.2008.02.002.

GB 50003-2011. (2011). Code for Design of Masonry Structures. China Standard Press, Beijing, China.

GB 50010-2010. (2010). Code for Design of Concrete Structures. China Standard Press, Beijing, China.

Boen, T., Imai, H., Ismail, F., Hanazato, T., & Lenny. (2015). Brief report of shaking table test on masonry building strengthened with ferrocement layers. Journal of Disaster Research, 10(3), 551–557. doi:10.20965/jdr.2015.p0551.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-09-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Ahmad Basshofi Habieb, Muhammad Rifat Hidayat, Wahyuniarsih Sutrisno, Nurmurat Kandymov, Gabriele Milani

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message