Flexural Behavior of RC Continuous Beams Strengthened by Cementitious Composite Materials

Hamdy M. Afefy, Ashraf M. Heniegal, Ahmed T. Baraghith, Omar M. O. Ibrahim, Mostafa E. A. Eldwiny

Abstract


Due to their great strain capacity, high tensile strength, and ability to localize cracks, cementitious composite materials are beneficial for strengthening reinforced concrete (RC) members. This paper illustrates the application of cementitious composite materials in the form of precast thin layers to strengthen a double-spanned, full-scale RC beam. Both positive and negative zones were strengthened by the precast layer embedded into the concrete cover. The precast layers have a dimension of 20 mm in thickness and 150 mm in width as that of the substrate beam and were applied by two configurations: plain and reinforced layers. A ductile smooth steel sheet with 2 mm in thickness and 100 mm in width was used inside the reinforced precast layer. The composite action of the precast layer has mutual benefits; the embedded steel sheet localizes the cracks, while the surrounding cementitious composite materials protect the steel sheet from environmental impact. The experimental results showed that the strengthening system has a significant contribution to improve the failure mode and load-carrying capacity. The use of a plain precast layer caused a 6% increase in the ultimate load and a 33% enhancement in the moment redistribution ratio compared to the control beam (CB). Applying the strengthening system with reinforced precast layer shifted the failure mode from rupture failure in the precast layer to delamination without slippage in the embedded steel sheet and matrix, leading to the full tensile capacity of the precast layer. Besides, the yielded and ultimate loads increased by 34% and 41%, respectively, and maximum deflection increased by 36%. In addition, the beam's ductility increased by 36%, and the moment redistribution ratio was enhanced by 49% compared to the CB.

 

Doi: 10.28991/CEJ-2024-010-09-05

Full Text: PDF


Keywords


Continuous RC Beams; Cementitious Composite Materials; Moment Redistribution; Precast Layer.

References


Nordin, H., & Täljsten, B. (2006). Concrete Beams Strengthened with Prestressed Near Surface Mounted CFRP. Journal of Composites for Construction, 10(1), 60–68. doi:10.1061/(asce)1090-0268(2006)10:1(60).

Jumaat, M. Z., Rahman, M. M., & Alam, M. A. (2010). Flexural strengthening of RC continuous T beam using CFRP laminate: A review. International Journal of Physical Sciences, 5(6), 619–625.

Abdelaleem, T., Diab, H. M., & Rashwan, M. M. (2021, December). New aspects about the effect of critical regions reinforcement on the strength and moment redistribution of RC continuous T-beams (Experimental and numerical study). Structures, 34, 4834-4850. doi:10.1016/j.istruc.2021.10.065.

Salama, A. S. D., Hawileh, R. A., & Abdalla, J. A. (2019). Performance of externally strengthened RC beams with side-bonded CFRP sheets. Composite Structures, 212, 281–290. doi:10.1016/j.compstruct.2019.01.045.

Abdallah, M., Al Mahmoud, F., Khelil, A., & Mercier, J. (2021). Efficiency of EB CFRP composites for flexural strengthening of continuous RC beams: A comparative study with NSM CFRP rods. Structures, 34, 1567–1588. doi:10.1016/j.istruc.2021.08.073.

El-Maaddawy, T., Alshawa, J., & El-Ariss, B. (2016). Strengthening of continuous concrete slab strips containing cutouts. ACI Structural Journal, 113(6), 1243–1252. doi:10.14359/51689027.

Alkhalil, J., & El-Maaddawy, T. (2017). Nonlinear Flexural Response of Continuous Concrete Slab Strips Strengthened with Near Surface–Mounted Composites. Journal of Composites for Construction, 21(1), 4016071. doi:10.1061/(asce)cc.1943-5614.0000730.

Su, M. ni, Zeng, C., Li, W. qian, Zhu, J. H., Lin, W. hao, Ueda, T., & Xing, F. (2020). Flexural performance of corroded continuous RC beams rehabilitated by ICCP-SS. Composite Structures, 232, 111556. doi:10.1016/j.compstruct.2019.111556.

Abdallah, M., Al Mahmoud, F., Khelil, A., Mercier, J., & Almassri, B. (2020). Assessment of the flexural behavior of continuous RC beams strengthened with NSM-FRP bars, experimental and analytical study. Composite Structures, 242, 112127. doi:10.1016/j.compstruct.2020.112127.

Hosen, M. A., Jumaat, M. Z., & Islam, A. B. M. S. (2015). Side Near Surface Mounted (SNSM) technique for flexural enhancement of RC beams. Materials & Design, 83, 587–597. doi:10.1016/j.matdes.2015.06.035.

Nayak, A. N., Kumari, A., & Swain, R. B. (2018). Strengthening of RC Beams Using Externally Bonded Fibre Reinforced Polymer Composites. Structures, 14, 137–152. doi:10.1016/j.istruc.2018.03.004.

De Lorenzis, L., & Nanni, A. (2001). Shear strengthening of reinforced concrete beams with near-surface mounted fiber-reinforced polymer rods. ACI Structural Journal, 98(1), 60–68. doi:10.14359/10147.

Hassan, T., & Rizkalla, S. (2003). Investigation of Bond in Concrete Structures Strengthened with Near Surface Mounted Carbon Fiber Reinforced Polymer Strips. Journal of Composites for Construction, 7(3), 248–257. doi:10.1061/(asce)1090-0268(2003)7:3(248).

Dias, S. J. E., Barros, J. A. O., & Janwaen, W. (2018). Behavior of RC beams flexurally strengthened with NSM CFRP laminates. Composite Structures, 201, 363–376. doi:10.1016/j.compstruct.2018.05.126.

Bilotta, A., Ceroni, F., Nigro, E., & Pecce, M. (2015). Efficiency of CFRP NSM strips and EBR plates for flexural strengthening of RC beams and loading pattern influence. Composite Structures, 124, 163–175. doi:10.1016/j.compstruct.2014.12.046.

Al-Mahmoud, F., Castel, A., & Franois, R. (2012). Failure modes and failure mechanisms of RC members strengthened by NSM CFRP composites - Analysis of pull-out failure mode. Composites Part B: Engineering, 43(4), 1893–1901. doi:10.1016/j.compositesb.2012.01.020.

Singh, M., Saini, B., & Chalak, H. D. (2019). Performance and composition analysis of engineered cementitious composite (ECC) – A review. Journal of Building Engineering, 26, 100851. doi:10.1016/j.jobe.2019.100851.

Li, V. C., Wang, S., & Wu, C. (2001). Tensile strain-hardening behavior or polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Materials Journal, 98(6), 483–492. doi:10.14359/10851.

Afefy, H. M., Kassem, N., & Hussein, M. (2015). Enhancement of flexural behaviour of CFRP-strengthened reinforced concrete beams using engineered cementitious composites transition layer. Structure and Infrastructure Engineering, 11(8), 1042–1053. doi:10.1080/15732479.2014.930497.

Hussein, M., Kunieda, M., & Nakamura, H. (2012). Strength and ductility of RC beams strengthened with steel-reinforced strain hardening cementitious composites. Cement and Concrete Composites, 34(9), 1061–1066. doi:10.1016/j.cemconcomp.2012.06.004.

Zhang, D., Ueda, T., & Furuuchi, H. (2012). A design proposal for concrete cover separation in beams strengthened by various externally bonded tension reinforcements. Journal of Advanced Concrete Technology, 10(9), 285–300. doi:10.3151/jact.10.285.

Zhang, J., Wang, Z., Ju, X., & Shi, Z. (2014). Simulation of flexural performance of layered ECC-concrete composite beam with fracture mechanics model. Engineering Fracture Mechanics, 131, 419–438. doi:10.1016/j.engfracmech.2014.08.016.

Japan Concrete Institute (JCI). (2002). Proceedings of the JCI international workshop on ductile fiber reinforced cementitious composites (DFRCC), Japan Concrete Institute, Chiyoda-ku, Japan.

Afefy, H. M. E. D., & Mahmoud, M. H. (2014). Structural performance of RC slabs provided by pre-cast ECC strips in tension cover zone. Construction and Building Materials, 65, 103–113. doi:10.1016/j.conbuildmat.2014.04.096.

Baraghith, A. T., Khalil, A. H. A., Etman, E. E., & Behiry, R. N. (2023). Improving the shear behavior of RC dapped-end beams using precast strain-hardening cementitious composite (P-SHCC) plates. Structures, 50, 978–997. doi:10.1016/j.istruc.2023.02.059.

Afefy, H. M., Baraghith, A. T., & Mahmoud, M. H. (2020). Retrofitting of defected reinforced-concrete cantilever slabs using different techniques. Magazine of Concrete Research, 72(14), 703–719. doi:10.1680/jmacr.18.00340.

Qasim, M., Lee, C. K., & Zhang, Y. X. (2023). Flexural strengthening of reinforced concrete beams using hybrid fibre reinforced engineered cementitious composite. Engineering Structures, 284, 115992. doi:10.1016/j.engstruct.2023.115992.

Tang, T. T., Peng, K. Di, Huang, J. Q., Guo, D., & Huang, B. T. (2024). Flexural performance of reinforced concrete beams strengthened with FRP-reinforced geopolymer matrix: Numerical validation and parametric study. Advances in Structural Engineering, 27(2), 269–287. doi:10.1177/13694332231222079.

ACI PRC-549.4-20. (2020). Guide to Design and Construction of Externally Bonded Fabric-Reinforced and Steel-Reinforced Grout Systems for Repair and Strengthening of Concrete Structures. American Concrete Institute, Michigan, United States.

Täljsten, B., & Blanksvärd, T. (2007). Mineral-Based Bonding of Carbon FRP to Strengthen Concrete Structures. Journal of Composites for Construction, 11(2), 120–128. doi:10.1061/(asce)1090-0268(2007)11:2(120).

Hashemi, S., & Al-Mahaidi, R. (2012). Experimental and finite element analysis of flexural behavior of FRP-strengthened RC beams using cement-based adhesives. Construction and Building Materials, 26(1), 268–273. doi:10.1016/j.conbuildmat.2011.06.021.

Elsanadedy, H. M., Almusallam, T. H., Alsayed, S. H., & Al-Salloum, Y. A. (2013). Flexural strengthening of RC beams using textile reinforced mortar - Experimental and numerical study. Composite Structures, 97, 40–55. doi:10.1016/j.compstruct.2012.09.053.

Kunieda, M., Hussein, M., Ueda, N., & Nakamura, H. (2010). Enhancement of crack distribution of UHP-SHCC under axial tension using steel reinforcement. Journal of Advanced Concrete Technology, 8(1), 49–57. doi:10.3151/jact.8.49.

Barhum, R., & Mechtcherine, V. (2012). Effect of short, dispersed glass and carbon fibres on the behaviour of textile-reinforced concrete under tensile loading. Engineering Fracture Mechanics, 92, 56–71. doi:10.1016/j.engfracmech.2012.06.001.

Baraghith, A. T., Mansour, W., Behiry, R. N., & Fayed, S. (2022). Effectiveness of SHCC strips reinforced with glass fiber textile mesh layers for shear strengthening of RC beams: Experimental and numerical assessments. Construction and Building Materials, 327, 127036. doi:10.1016/j.conbuildmat.2022.127036.

Wu, F., Zhao, B., Cao, J., Shen, X., Wang, Z., Lei, H., & Cui, Z. (2024). Experimental and theoretical investigations on flexural performance of hybrid fiber reinforced ECC-NC composite beams. Case Studies in Construction Materials, 20, 3178. doi:10.1016/j.cscm.2024.e03178.

Mandor, A., & El Refai, A. (2022). Strengthening the hogging and sagging regions in continuous beams with fiber-reinforced cementitious matrix (FRCM): Experimental and analytical investigations. Construction and Building Materials, 321, 126341. doi:10.1016/j.conbuildmat.2022.126341.

Khattak, N., Mansour, M., El-Maaddawy, T., & Ismail, N. (2022). Continuous Reinforced Concrete Beams Strengthened with Fabric-Reinforced Cementitious Matrix: Experimental Investigation and Numerical Simulation. Buildings, 12(1), 27. doi:10.3390/buildings12010027.

Feng, R., Liu, Y., Zhu, J. H., & Xing, F. (2020). Flexural behaviour of C-FRCM strengthened corroded RC continuous beams. Composite Structures, 245, 112200. doi:10.1016/j.compstruct.2020.112200.

Liu, D., Qin, F., Di, J., & Zhang, Z. (2023). Flexural behavior of reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP) and ECC. Case Studies in Construction Materials, 19, 2270. doi:10.1016/j.cscm.2023.e02270.

Liu, L., Wang, L., & Xiao, Z. (2024). Flexural behavior of RC beams reinforced by ECC layer and steel plate: numerical simulation. International Journal of Structural Integrity, 15(3), 498–521. doi:10.1108/IJSI-08-2023-0083.

ASTM C39/C39M-20. (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi.10.1520/C0039_C0039M-20.

ASTM A770/A770M-03. (2010). Standard Specification for Through-Thickness Tension Testing of Steel Plates for Special Applications. ASTM International, Pennsylvania, United States. doi:10.1520/A0770_A0770M-03.

ACI PRC-440.2-17. (2017). Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. American Concrete Institute, Michigan, United States.

Hanoon, A. N., Jaafar, M. S., Hejazi, F., & Abdul Aziz, F. N. A. (2017). Energy absorption evaluation of reinforced concrete beams under various loading rates based on particle swarm optimization technique. Engineering Optimization, 49(9), 1483–1501. doi:10.1080/0305215X.2016.1256729.

Mukhopadhyaya, P., Swamy, N., & Lynsdale, C. (1998). Optimizing Structural Response of Beams Strengthened with GFRP Plates. Journal of Composites for Construction, 2(2), 87–95. doi:10.1061/(asce)1090-0268(1998)2:2(87).

BS EN 1992-1-1:2004 (2004). Eurocode 2: Design of concrete structures - Part 1–1: General rules and rules for buildings. British Standards Institution, London, United Kingdom.

ACI 318-14. (1994). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute (ACI), Michigan, United States.

Aiello, M. A., Valente, L., & Rizzo, A. (2007). Moment redistribution in continuous reinforced concrete beams strengthened with carbon-fiber-reinforced polymer laminates. Mechanics of Composite Materials, 43(5), 453–466. doi:10.1007/s11029-007-0043-x.

Akbarzadeh, H., & Maghsoudi, A. A. (2010). Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer. Materials and Design, 31(3), 1130–1147. doi:10.1016/j.matdes.2009.09.041.

El-Refaie, S. A., Ashour, A., & Garrity, S. W. (2003). Agging and Hogging Strengthening of Continuous Reinforced Concrete Beams Using Carbon Fiber-Reinforced Polymer Sheets. ACI Structural Journal, 100(4), 12653. doi:10.14359/12653.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-09-05

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 mostafa Elsaeed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message