Enhancing Soil Stability through Innovative Microbial-Induced Calcium Carbonate Techniques with Sustainable Ingredient

Samer Rababah, Ahmad Alawneh, Borhan A. Albiss, Hussien H. Aldeeky, Eman J. Bani Ismaeel, Sawsan Mutlaq

Abstract


Expansive soil poses significant challenges for civil engineers, leading to structural damage, particularly in lightly loaded structures. This study employs an innovative and sustainable recipe to stabilize highly expansive soil using the Microbial-Induced Calcium Carbonate Precipitation (MICP) technique by substituting conventional ingredients with olive mill wastewater and hydrated lime. A series of laboratory tests were performed to evaluate the improvement in Atterberg's limits, Free Swell, Unconfined Compressive Strength (UCS), and pH, in addition to a series of qualitative measurements, including X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Optical Microscopic Images, and bacteria growth rate. Different mellowing periods and different cementation concentrations were used. The proposed recipe results showed a 50% reduction in the soil's free swell value. The UCS of the treated soil using the proposed recipe was eight times that of the untreated soil and twice that of the soil treated with the traditional recipe. The SEM images showed flocculation and aggregation in the soil particles, with the voids becoming smaller and filled with calcium carbonate (CaCO3). The XRD results showed the formation of new CaCO3particles. The optimized recipe demonstrated remarkable enhancement improvement and significant changes in soil physical properties and microstructure.

 

Doi: 10.28991/CEJ-2024-010-08-08

Full Text: PDF


Keywords


Expansive Soil; Microbial-Induced Calcium Carbonate Precipitation (MICP); Stabilization; Olive Mill Wastewater; Environmental Sustainability.

References


Dhowian, A. W., & Al-Saadan, T. A. (2010). Swell Behavior of Expansive Soil with Free Lateral Movements. Journal of King Saud University - Engineering Sciences, 22(2), 51–63. doi:10.1016/S1018-3639(18)30493-8.

Jalal, F. E., Xu, Y., Jamhiri, B., Memon, S. A., & Graziani, A. (2020). On the Recent Trends in Expansive Soil Stabilization Using Calcium-Based Stabilizer Materials (CSMs): A Comprehensive Review. Advances in Materials Science and Engineering, 1510969. doi:10.1155/2020/1510969.

Cai, G. H., Liu, S. Y., & Zheng, X. (2019). Influence of drying-wetting cycles on engineering properties of carbonated silt admixed with reactive MgO. Construction and Building Materials, 204, 84–93. doi:10.1016/j.conbuildmat.2019.01.125.

Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 992–1001. doi:10.1061/(asce)gt.1943-5606.0000666.

Jiang, N. J., Wang, Y. J., Chu, J., Kawasaki, S., Tang, C. S., Cheng, L., Du, Y. J., Shashank, B. S., Singh, D. N., Han, X. Le, & Wang, Y. Z. (2022). Bio-mediated soil improvement: An introspection into processes, materials, characterization and applications. Soil Use and Management, 38(1), 68–93. doi:10.1111/sum.12736.

Osinubi, K. J., Eberemu, A. O., Ijimdiya, T. S., Yakubu, S. E., Gadzama, E. W., Sani, J. E., & Yohanna, P. (2020). Review of the use of microorganisms in geotechnical engineering applications. SN Applied Sciences, 2, 207. doi:10.1007/s42452-020-1974-2.

Mitchell, J. K., & Santamarina, J. C. (2005). Biological Considerations in Geotechnical Engineering. Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222–1233. doi:10.1061/(asce)1090-0241(2005)131:10(1222).

Ivanov, V., Stabnikov, V., Stabnikova, O., & Ahmed, Z. (2020). Biocementation technology for construction of artificial oasis in sandy desert. Journal of King Saud University - Engineering Sciences, 32(8), 491–494. doi:10.1016/j.jksues.2019.07.003.

Sorum, M. G., & Kalita, A. (2023). Effect of Bio-Cementation with Rice Husk Ash on Permeability of Silty Sand. Civil Engineering Journal (Iran), 9(11), 2854–2867. doi:10.28991/CEJ-2023-09-11-016.

Cheng, G., Lin, H., Chaichi, A., Gartia, M. R., Park, J. S., & Sheikh, E. (2023). Mechanical Behavior and Biogeochemical Reactions of a Fine-Grained Soil Treated by Microbially Induced Carbonate Precipitation. Journal of Materials in Civil Engineering, 35(4), 4023023. doi:10.1061/(asce)mt.1943-5533.0004687.

Nasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus sphaericus. Heliyon, 8(7), e09879. doi:10.1016/j.heliyon.2022.e09879.

Fouladi, A. S., Arulrajah, A., Chu, J., & Horpibulsuk, S. (2023). Application of Microbially Induced Calcite Precipitation (MICP) technology in construction materials: A comprehensive review of waste stream contributions. Construction and Building Materials, 388, 131546. doi:10.1016/j.conbuildmat.2023.131546.

Demenev, A. D., Khmurchik, V. T., Maksimovich, N. G., Demeneva, E. P., & Sedinin, A. M. (2021). Improvement of sand properties using biotechnological precipitation of calcite cement (CaCO3). Environmental Earth Sciences, 80(17), 1–13. doi:10.1007/s12665-021-09818-w.

Naveed, M., Duan, J., Uddin, S., Suleman, M., Hui, Y., & Li, H. (2020). Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil. Ecological Engineering, 153, 105885. doi:10.1016/j.ecoleng.2020.105885.

Pacheco, V. L., Bragagnolo, L., Reginatto, C., & Thomé, A. (2022). Microbially Induced Calcite Precipitation (MICP): Review from an Engineering Perspective. Geotechnical and Geological Engineering, 40(5), 2379–2396. doi:10.1007/s10706-021-02041-1.

Li, X., Zhang, C., Xiao, H., Jiang, W., Qian, J., & Li, Z. (2021). Reducing Compressibility of the Expansive Soil by Microbiological-Induced Calcium Carbonate Precipitation. Advances in Civil Engineering, 2021, 8818771. doi:10.1155/2021/8818771.

Chittoori, B. C. S., Rahman, T., & Burbank, M. (2021). Microbial-Facilitated Calcium Carbonate Precipitation as a Shallow Stabilization Alternative for Expansive Soil Treatment. Geotechnics, 1(2), 558–572. doi:10.3390/geotechnics1020025.

Tian, X., Xiao, H., Li, Z., Li, Z., Su, H., & Ouyang, Q. (2022). Experimental Study on the Strength Characteristics of Expansive Soils Improved by the MICP Method. Geofluids, 2022, 1-20. doi:10.1155/2022/3089820.

Tiwari, N., & Satyam, N. (2024). Indigenous Bacteria-Driven Eco-Friendly Soil Stabilization: A Bioinspired Approach Through Microbially Induced Calcite Precipitation for Sustainable Infrastructure Development. Indian Geotechnical Journal, 1-17. doi:10.1007/s40098-023-00864-8.

Tian, X., Xiao, H., Su, H., & Ouyang, Q. (2024). Experimental study on creep and long-term strength characteristics of expansive soil improved by the MICP method. Arabian Journal of Geosciences, 17(6), 202. doi:10.1007/s12517-024-12009-z.

Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1), 100002. doi:10.1016/j.bgtech.2023.100002.

Yang, Z., Liu, L., Dong, Y., & Gao, Z. (2024). Comparative study on the effect of SRB and Sporosarcina pasteurii on the MICP cementation and solidification of lead–zinc tailings. Chemical Engineering Journal, 495, 153446. doi:10.1016/j.cej.2024.153446.

Gharaibeh, N., AlAjlouni, M., & Al-Rousan, A. (2019). Olive mill wastewater as cutting fluids: Effect on surface roughness of aluminum. Jordan Journal of Mechanical and Industrial Engineering, 12(3), 161–166.

Meenambigai, P., Vijayaraghavan, R., Gowri, R. S., Rajarajeswari, P., & Prabhavathi, P. (2016). Biodegradation of Heavy Metals – A Review. International Journal of Current Microbiology and Applied Sciences, 5(4), 375–383. doi:10.20546/ijcmas.2016.504.045.

Yu, T., Souli, H., Péchaud, Y., & Fleureau, J. M. (2022). Optimizing protocols for microbial induced calcite precipitation (MICP) for soil improvement–a review. European Journal of Environmental and Civil Engineering, 26(6), 2218–2233. doi:10.1080/19648189.2020.1755370.

Narasimha Rao, A. V., & Chittaranjan, M. (2010). Harmful effects of certain Industrial wastes on geotechnical properties of soils - A review. Nature Environment and Pollution Technology, 9(4), 799–804.

Tang, C. S., Yin, L. Yang, Jiang, N. Jun, Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(5), 1–23. doi:10.1007/s12665-020-8840-9.

Tiwari, N., Satyam, N., & Sharma, M. (2021). Micro-mechanical performance evaluation of expansive soil biotreated with indigenous bacteria using MICP method. Scientific Reports, 11(1), 10324. doi:10.1038/s41598-021-89687-2.

Osinubi, K. J., Eberemu, A. O., Gadzama, E. W., & Ijimdiya, T. S. (2019). Plasticity characteristics of lateritic soil treated with Sporosarcina pasteurii in microbial-induced calcite precipitation application. SN Applied Sciences, 1(8), 829. doi:10.1007/s42452-019-0868-7.

Wani, K. M. N. S., & Mir, B. A. (2019). Effect of Biological Cementation on the Mechanical Behaviour of Dredged Soils with Emphasis on Micro-structural Analysis. International Journal of Geosynthetics and Ground Engineering, 5(4), 32. doi:10.1007/s40891-019-0183-9.

Wen, K., Li, Y., Liu, S., Bu, C., & Li, L. (2021). Evaluation of MICP treatment through EC and pH tests in urea hydrolysis process. Environmental Geotechnics, 8(4), 274–281. doi:10.1680/jenge.17.00108.

Oyediran, I. A., & Ayeni, O. O. (2020). Comparative effect of microbial induced calcite precipitate, cement and rice husk ash on the geotechnical properties of soils. SN Applied Sciences, 2(7). doi:10.1007/s42452-020-2956-0.

Moradi, G., Shafaghatian, S., & Katebi, H. (2022). Effect of Chemical and Biological Stabilization on the Resilient Modulus of Clay Subgrade Soil. International Journal of Pavement Research and Technology, 15(2), 415–432. doi:10.1007/s42947-021-00029-x.

Islam, M. T., Chittoori, B. C. S., & Burbank, M. (2020). Evaluating the Applicability of Biostimulated Calcium Carbonate Precipitation to Stabilize Clayey Soils. Journal of Materials in Civil Engineering, 32(3), 4019369. doi:10.1061/(asce)mt.1943-5533.0003036.

Rahman, T. (2018). Studying the Use of Microbial Induced Calcite Precipitation as a Shallow Stabilization Alternative to Treat Expansive Soils. Master Thesis, Boise State University, Boise, United States.

Su, H., Xiao, H., Li, Z., Tian, X., Luo, S., Yu, X., & Ouyang, Q. (2022). Experimental Study on Microstructure Evolution and Fractal Features of Expansive Soil Improved by MICP Method. Frontiers in Materials, 9. doi:10.3389/fmats.2022.842887.

Xiao, J. Z., Wei, Y. Q., Cai, H., Wang, Z. W., Yang, T., Wang, Q. H., & Wu, S. F. (2020). Microbial-Induced Carbonate Precipitation for Strengthening Soft Clay. Advances in Materials Science and Engineering, 8140724. doi:10.1155/2020/8140724.

Hammes, F., Seka, A., Van Hege, K., Van De Wiele, T., Vanderdeelen, J., Siciliano, S. D., & Verstraete, W. (2003). Calcium removal from industrial wastewater by bio-catalytic CaCO3 precipitation. Journal of Chemical Technology and Biotechnology, 78(6), 670–677. doi:10.1002/jctb.840.

Pradhan, R. C., Nanda, S., Mohapatra, B. G., Pal, S. S., & Beriha, B. (2023). Utilization of enzymatic soil as a subgrade material. Arabian Journal of Geosciences, 16(8), 1–19. doi:10.1007/s12517-023-11579-8.

Cui, M. J., Chu, J., & Lai, H. J. (2024). Optimization of one-phase-low-pH enzyme-induced carbonate precipitation method for soil improvement. Acta Geotechnica, 19(3), 1611–1625. doi:10.1007/s11440-023-02175-x.

Soon, N. W., Lee, L. M., Khun, T. C., & Ling, H. S. (2013). Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE Journal of Civil Engineering, 17(4), 718–728. doi:10.1007/s12205-013-0149-8.

Arpajirakul, S., Pungrasmi, W., & Likitlersuang, S. (2021). Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Construction and Building Materials, 282, 122722. doi:10.1016/j.conbuildmat.2021.122722.

Kamaraj, N., Janani, V., Ravichandran, P. T., Nigitha, D., & Priyanka, K. (2016). Study on Improvement of Soil Behaviour by Bio-Stabilsation Method. Indian Journal of Science and Technology, 9(33), 5–9. doi:10.17485/ijst/2016/v9i33/95979.

Teng, F., Sie, Y. C., & Ouedraogo, C. (2021). Strength improvement in silty clay by microbial-induced calcite precipitation. Bulletin of Engineering Geology and the Environment, 80(8), 6359–6371. doi:10.1007/s10064-021-02308-0.

Pei, D., Liu, Z., Wu, W., & Hu, B. (2021). Transcriptome analyses reveal the utilization of nitrogen sources and related metabolic mechanisms of Sporosarcina pasteurii. PLoS ONE, 16(2), 1–22. doi:10.1371/journal.pone.0246818.

AL-Eitan, L. N., Alkhatib, R. Q., Mahawreh, B. S., Tarkhan, A. H., Malkawi, H. I., & Rusan, M. J. (2021). The Effects of Olive Mill Wastewater on Soil Microbial Populations. Jordan Journal of Biological Sciences, 14(3), 545–549. doi:10.54319/jjbs/140321.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-08-08

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 samer rababah

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message