Evaluation of GPM IMERG Product Against Ground Station Rainfall Data in Semi-Arid Region

Denik Sri Krisnayanti, Jusuf J. S. Pah, Ralno R. Klau, Alex Decaprio, . Syamsumarlin

Abstract


Benanain River is the longest and largest river on Timor Island, with a length of 132 km and an area of 6,460.12 km². In this region, a significant factor affecting the presence of surface water sources is rainfall. To compensate for the lack or unavailability of automatic Rainfall Data (RD) in the Benanain River Basin (BRB), Global Rainfall Measurement (GPM) data from 1998 to 2018 (20 years) were used. The accuracy of GPM rainfall analysis was obtained when parameter conformity and compatibility with data recorded at Rainfall Station (RS) were maintained. The difficulty of predicting rainfall values, spatially and temporally, in the field led to data gaps and unreliable data for analysis needs. Additionally, RD obtained from observation stations contributed to measuring rainfall because there was insufficient RD for analysis in a few regions. The challenge of accurately predicting rainfall values in the field led to differences in data, rendering it unreliable for analysis. To address this issue, satellite data was required as an alternative method to estimate rainfall. Among a total of 7 RS, only 2 passed rainfall characteristic tests. Following this discussion, Lahurus station showed a correlation coefficient of 0.7046, an RMSE of 25.89, and an NSE of 0.476. In addition, the rainfall characteristic test result for Haliwen Station was 1.66 (R100/R2). The second station that passed was Kaubele Station, signifying a correlation coefficient of 0.7907, RMSE of 25.28, and NSE of 0.604. Additionally, the rainfall characteristic test result for Haliwen Station was 3.04 (R100/R2) and the daily performance of the GPM product in the rainy season with low rainfall (≤ 50 mm) was better compared to extreme rainfall (≥ 100 mm). In this study, corrected GPM daily RD in the range >100 mm was underestimated. This analysis implied that the GPM IMERG Final Run product on daily and monthly rainfall timescales had strong detection capabilities and provided data support for long-time series investigations on Timor Island.

 

Doi: 10.28991/CEJ-2024-010-12-09

Full Text: PDF


Keywords


Rainfall Characteristic; Benanain; Timor; Precipitation.

References


Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J. L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., … Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America, 114(35), 9326–9331. doi:10.1073/pnas.1701762114.

Kummerow, C., Barnes, W., Kozu, T., Shiue, J., & Simpson, J. (1998). The Tropical Rainfall Measuring Mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15(3), 809–817. doi:10.1175/1520-0426(1998)015<0809: TTRMMT>2.0.CO;2.

Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., McGavock, B., & Susskind, J. (2001). Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations. Journal of Hydrometeorology, 2(1), 36–50. doi:10.1175/1525-7541(2001)002<0036:gpaodd>2.0.co;2.

Wang, H., Yuan, Y., Zeng, S., Li, W., & Tang, X. (2021). Evaluation of satellite-based precipitation products from GPM IMERG and GSMaP over the three-river headwaters region, China. Hydrology Research, 52(6), 1328–1343. doi:10.2166/NH.2021.029.

Ramadhan, R., Muharsyah, R., Marzuki, Yusnaini, H., Vonnisa, M., Hashiguchi, H., Suryanto, W., & Sholihun. (2022). Evaluation of GPM IMERG Products for Extreme Precipitation over Indonesia. Journal of Physics: Conference Series, 2309(1), 1–8. doi:10.1088/1742-6596/2309/1/012008.

Hutagaol, S. M., E. Ball, J., Suhartanto, E., & Wahyuni, S. (2023). The Evaluation of GPM IMERG v.06 Rainfall Product over the Lau Simeme Watershed in Indonesia. Civil and Environmental Science, 6(1), 33–42. doi:10.21776/ub.civense.2023.00601.5.

Huffman, G., Bolvin, D., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., ... & Xie, P. (2020). NASA GPM Integrated Multi-SatellitE Retrievals for GPM (IMERG) Algorithm Theoretical Basis Document (ATBD) Version 06. National Aeronautics and Space Administration: Washington, United States.

Sungmin, O., Foelsche, U., Kirchengast, G., Fuchsberger, J., Tan, J., & Petersen, W. A. (2017). Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria. Hydrology and Earth System Sciences, 21(12), 6559–6572. doi:10.5194/hess-21-6559-2017.

Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95(5), 701–722. doi:10.1175/BAMS-D-13-00164.1.

Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., & Wolff, D. B. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55. doi:10.1175/JHM560.1.

Keikhosravi-Kiany, M. S., & Balling, R. C. (2024). Evaluation of GPM IMERG Early, Late, and Final Run in Representing Extreme Rainfall Indices in Southwestern Iran. Remote Sensing, 16(15), 2779. doi:10.3390/rs16152779.

Zhang, D., Yang, M., Ma, M., Tang, G., Wang, T., Zhao, X., Ma, S., Wu, J., & Wang, W. (2022). Can GPM IMERG Capture Extreme Precipitation in North China Plain? Remote Sensing, 14(4), 928. doi:10.3390/rs14040928.

Wahyuni, S., Hambali, R., & Fahriani, F. (2020). Evaluation of the Accuracy of GPM Satellite Rainfall Data on Surface Rainfall Data. Pertemuan Ilmiah Tahunan (PIT) HATHI-37. Universitas Bangka Belitung, 1083-1094. (In Indonesian).

Mamenun, M., Pawitan, H., & Sopaheluwakan, A. (2014). Validasi Dan Koreksi Data Satelit Trmm Pada Tiga Pola Hujan Di Indonesia. Jurnal Meteorologi Dan Geofisika, 15(1). doi:10.31172/jmg.v15i1.169.

Tang, G., Ma, Y., Long, D., Zhong, L., & Hong, Y. (2016). Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. Journal of Hydrology, 533, 152–167. doi:10.1016/j.jhydrol.2015.12.008.

Chen, H., Yong, B., Shen, Y., Liu, J., Hong, Y., & Zhang, J. (2020). Comparison analysis of six purely satellite-derived global precipitation estimates. Journal of Hydrology, 581. doi:10.1016/j.jhydrol.2019.124376.

Bulovic, N., McIntyre, N., & Johnson, F. (2020). Evaluation of imerg v05b 30-min rainfall estimates over the high-elevation tropical andes mountains. Journal of Hydrometeorology, 21(12), 2875–2892. doi:10.1175/JHM-D-20-0114.1.

Et-Takaouy, C., Aqnouy, M., Boukholla, A., & Stitou El Messari, J. E. (2024). Exploring the spatio-temporal variability of four satellite-based precipitation products (SPPs) in northern Morocco: a comparative study of complex climatic and topographic conditions. Mediterranean Geoscience Reviews, 6(2), 123–144. doi:10.1007/s42990-024-00119-5.

Rachdane, M., El mehdi Saidi, M., & Tramblay, Y. (2022). Evaluation of GPM IMERG products and ERA5 reanalysis for flood modeling in a semi-arid watershed. Copernicus Meetings, No. IAHS2022-518. doi:10.5194/iahs2022-518.

Tian, Y., Lv, X., Guo, H., Li, J., Meng, X., Guo, C., Zhu, L., & De Maeyer, P. (2024). Evaluation of GPM IMERG Product over the Yellow River Basin Using an Improved Error-Component Procedure. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 8918–8937. doi:10.1109/JSTARS.2024.3392601.

Tian, Y., Nearing, G. S., Peters-Lidard, C. D., Harrison, K. W., & Tang, L. (2016). Performance metrics, error modeling, and uncertainty quantification. Monthly Weather Review, 144(2), 607–613. doi:10.1175/MWR-D-15-0087.1.

Bunganaen, W., Krisnayanti, D. S., Nasjono, J. K., & Saudale, N. S. (2023). Pemanfaatan Data Tropical Rainfall Measuring Mission Pada Stasiun Hujan Di Wilayah Sungai Benanain. Jurnal Ilmiah Desain & Konstruksi, 22(2), 168–179. doi:10.35760/dk.2023.v22i2.8627.

Badan Pusat Statistik NTT. (2021). Statistics of East Nusa Tenggara. Kupang, Indonesia. (In Indonesian).

Asdak, C. (2023). Hydrology and river basin management. UGM Press, Yogyakarta, Indonesia. (In Indonesian).

Iqbal Hasan, M. (2009). Main points of statistical material 1. Bumi Aksara, Jakarta, Indonesia. (In Indonesian).

Jarwanti, D. P., Suhartanto, E., & Fidari, J. S. (2021). Validation of TRMM (Tropical Rainfall Measuring Mission) Satellite Rainfall Data with Rain Gauge Post Data in Grindulu Watershed, Pacitan Regency, East Java. Journal of Water Resources Technology and Engineering, 1(2), 772–785. doi:10.21776/ub.jtresda.2021.001.02.36.

Liu, Y., Wu, Y., Feng, Z., Huang, X., & Wang, D. (2017). Evaluation of a Variety of Satellite Retrieved Precipitation Products Based on Extreme Rainfall in China. Tropical Geography, 37(3), 417–433. doi:10.13284/j.cnki.rddl.002949.

Sun, W., Sun, Y., Li, X., Wang, T., Wang, Y., Qiu, Q., & Deng, Z. (2018). Evaluation and correction of GPM IMERG precipitation products over the capital circle in Northeast China at multiple spatiotemporal scales. Advances in Meteorology, 2018, 1–14. doi:10.1155/2018/4714173.

Bendungan, B. (2019). Design Rainfall Analysis with TRMM Data. Bimbingan Teknis Balai Bendungan, Palembang, Indonesia.

NASA. (2022). The Global Rainfall Measurement Mission. National Aeronautics and Space Administration (NASA), Washington, United States. Available online: https://gpm.nasa.gov/missions/GPM (accessed on November 2024).

Murphy, C., Cunnane, C., Das, S., & Mandal, U. (2014). Flood Studies Update Technical Research Report Volume II Flood Frequency Estimation, Technical Research Reports, NNUI Galway, Galway, Ireland.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-12-09

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Denik Sri Krisnayanti, Jusuf J S Pah, Ralno Robson Klau, Alex Decaprio, Syam Sumarlin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message