Natural Rubber Latex-Modified Concrete with Bottom Ash for Sustainable Rigid Pavements
Downloads
Doi: 10.28991/CEJ-2024-010-08-05
Full Text: PDF
Downloads
[2] Huang, Y.H. (2004) Pavement Analysis and Design. Pearson, London, United Kingdom.
[3] Griffiths, S., Sovacool, B. K., Furszyfer Del Rio, D. D., Foley, A. M., Bazilian, M. D., Kim, J., & Uratani, J. M. (2023). Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options. Renewable and Sustainable Energy Reviews, 180, 113291. doi:10.1016/j.rser.2023.113291.
[4] Imbabi, M. S., Carrigan, C., & McKenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1(2), 194–216. doi:10.1016/j.ijsbe.2013.05.001.
[5] Singh, M., & Siddique, R. (2014). Compressive strength, drying shrinkage and chemical resistance of concrete incorporating coal bottom ash as partial or total replacement of sand. Construction and Building Materials, 68, 39–48. doi:10.1016/j.conbuildmat.2014.06.034.
[6] Andrade, L. B., Rocha, J. C., & Cheriaf, M. (2007). Evaluation of concrete incorporating bottom ash as a natural aggregates replacement. Waste Management, 27(9), 1190–1199. doi:10.1016/j.wasman.2006.07.020.
[7] Bai, Y., Darcy, F., & Basheer, P. A. M. (2005). Strength and drying shrinkage properties of concrete containing furnace bottom ash as fine aggregate. Construction and Building Materials, 19(9), 691–697. doi:10.1016/j.conbuildmat.2005.02.021.
[8] Ranapratap, P., & Padmanabham, K. (2016). Effect of Replacing Fine Aggregate with Bottom Ash in M40 Grade of Concrete with Opc-53S Cement. International Journal of Research in Engineering and Technology, 5(10), 59–62. doi:10.15623/ijret.2016.0510011.
[9] Soman, K., Sasi, D., & Abubaker, K. A. (2014). Strength properties of concrete with partial replacement of sand by bottom ash. International Journal of Innovative Research in Advanced Engineering, 1(7), 2349–2163.
[10] Yang, I. H., Park, J., Dinh Le, N., & Jung, S. (2020). Strength Properties of High-Strength Concrete Containing Coal Bottom Ash as a Replacement of Aggregates. Advances in Materials Science and Engineering, 2020, 1–12. doi:10.1155/2020/4246396.
[11] Mousa, A. (2023). Utilization of coal bottom ash from thermal power plants as a cement replacement for building: A promising sustainable practice. Journal of Building Engineering, 74, 106885. doi:10.1016/j.jobe.2023.106885.
[12] Singh, M., & Siddique, R. (2013). Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resources, Conservation and Recycling, 72, 20–32. doi:10.1016/j.resconrec.2012.12.006.
[13] Singh, M., & Siddique, R. (2016). Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete. Journal of Cleaner Production, 112, 620–630. doi:10.1016/j.jclepro.2015.08.001.
[14] Özkan, Ö., Yüksel, I., & Muratoǧlu, Ö. (2007). Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag. Waste Management, 27(2), 161–167. doi:10.1016/j.wasman.2006.01.006.
[15] Yüksel, I., & Genç, A. (2007). Properties of concrete containing nonground ash and slag as fine aggregate. ACI Materials Journal, 104(4), 397–403. doi:10.14359/18829.
[16] Rafieizonooz, M., Salim, M. R., Mirza, J., Hussin, M. W., Salmiati, Khan, R., & Khankhaje, E. (2017). Toxicity characteristics and durability of concrete containing coal ash as substitute for cement and river sand. Construction and Building Materials, 143, 234–246. doi:10.1016/j.conbuildmat.2017.03.151.
[17] Kou, S. C., & Poon, C. S. (2009). Properties of concrete prepared with crushed fine stone, furnace bottom ash and fine recycled aggregate as fine aggregates. Construction and Building Materials, 23(8), 2877–2886. doi:10.1016/j.conbuildmat.2009.02.009.
[18] Kim, H. K., & Lee, H. K. (2011). Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Construction and Building Materials, 25(2), 1115–1122. doi:10.1016/j.conbuildmat.2010.06.065.
[19] Kurama, H., & Kaya, M. (2008). Usage of coal combustion bottom ash in concrete mixture. Construction and Building Materials, 22(9), 1922–1928. doi:10.1016/j.conbuildmat.2007.07.008.
[20] Subash, S., Mini, K., & Ananthkumar, M. (2021). Incorporation of natural rubber latex as concrete admixtures for improved mechanical properties. Materials Today: Proceedings, 46, 4859–4862. doi:10.1016/j.matpr.2020.10.326.
[21] Muhammad, B., & Ismail, M. (2012). Performance of natural rubber latex modified concrete in acidic and sulfated environments. Construction and Building Materials, 31, 129–134. doi:10.1016/j.conbuildmat.2011.12.099.
[22] Tuffrey, J., Siwseng, P., Laksanakit, C., & Chusilp, N. (2024). Enhancing the performance of waste paper pulp-cement composites, through the incorporation of natural rubber latex: A sustainable approach for high-performance construction materials. Construction and Building Materials, 430, 136345. doi:10.1016/j.conbuildmat.2024.136345.
[23] Yaowarat, T., Suddeepong, A., Hoy, M., Horpibulsuk, S., Takaikaew, T., Vichitcholchai, N., Arulrajah, A., & Chinkulkijniwat, A. (2021). Improvement of flexural strength of concrete pavements using natural rubber latex. Construction and Building Materials, 282, 122704. doi:10.1016/j.conbuildmat.2021.122704.
[24] Suddeepong, A., Buritatum, A., Hoy, M., Horpibulsuk, S., Takaikaew, T., Horpibulsuk, J., & Arulrajah, A. (2022). Natural Rubber Latex–Modified Concrete Pavements: Evaluation and Design Approach. Journal of Materials in Civil Engineering, 34(9), 4022215. doi:10.1061/(asce)mt.1943-5533.0004364.
[25] Samingthong, W., Hoy, M., Ro, B., Horpibulsuk, S., Yosthasaen, T., Suddeepong, A., Buritatum, A., Yaowarat, T., & Arulrajah, A. (2023). Natural Rubber Latex-Modified Concrete with PET and Crumb Rubber Aggregate Replacements for Sustainable Rigid Pavements. Sustainability (Switzerland), 15(19), 14147. doi:10.3390/su151914147.
[26] ASTM C127-15. (2024). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate (Withdrawn 2024). ASTM International, Pennsylvania, United States. doi:10.1520/C0127-15.
[27] ASTM C131-06. (2010). Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, Pennsylvania, United States. doi:10.1520/C0131-06.
[28] ASTM C128-22. (2004). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International, Pennsylvania, United States. doi:10.1520/C0128-22.
[29] ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
[30] ASTM C39/39M-21. (2021). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-21.
[31] ASTM C78-09. (2010). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, Pennsylvania, United States. doi:10.1520/C0078-09.
[32] DHS309/2544. (1996). Thailand Department of Highways, Standards for highway construction, DHS309/2544, Bangkok, Thailand. (In Thai).
[33] Muhammad, B., Ismail, M., Bhutta, M. A. R., & Abdul-Majid, Z. (2012). Influence of non-hydrocarbon substances on the compressive strength of natural rubber latex-modified concrete. Construction and Building Materials, 27(1), 241–246. doi:10.1016/j.conbuildmat.2011.07.054.
[34] Abdulmatin, A., Tangchirapat, W., & Jaturapitakkul, C. (2018). An investigation of bottom ash as a pozzolanic material. Construction and Building Materials, 186, 155–162. doi:10.1016/j.conbuildmat.2018.07.101.
[35] Hashemi, S. S. G., Mahmud, H. Bin, Djobo, J. N. Y., Tan, C. G., Ang, B. C., & Ranjbar, N. (2018). Microstructural characterization and mechanical properties of bottom ash mortar. Journal of Cleaner Production, 170, 797–804. doi:10.1016/j.jclepro.2017.09.191.
[36] Mandal, A. K., & Sinha, O. P. (2014). Review on Current Research Status on Bottom Ash: An Indian Prospective. Journal of The Institution of Engineers (India): Series A, 95(4), 277–297. doi:10.1007/s40030-014-0100-0.
[37] Schaefer, R. J. (2010). Mechanical properties of rubber. Harris' Shock and Vibration Handbook, 6, 33-1, McGraw Hill Education, New York, United States.
[38] Loykaew, A., & Utara, S. (2020). Effect of acidic and sulfated environments on phase transformation, compressive strength and microstructure of natural rubber latex-modified cement pastes. Journal of Materials Research and Technology, 9(6), 15496–15512. doi:10.1016/j.jmrt.2020.11.016.
[39] Sukmak, G., Sukmak, P., Horpibulsuk, S., Yaowarat, T., Kunchariyakun, K., Patarapaiboolchai, O., & Arulrajah, A. (2020). Physical and mechanical properties of natural rubber modified cement paste. Construction and Building Materials, 244, 118319. doi:10.1016/j.conbuildmat.2020.118319.
[40] Elyasigorji, F., Farajiani, F., Hajipour Manjili, M., Lin, Q., Elyasigorji, S., Farhangi, V., & Tabatabai, H. (2023). Comprehensive Review of Direct and Indirect Pozzolanic Reactivity Testing Methods. Buildings, 13(11), 2789. doi:10.3390/buildings13112789.
[41] An, J., Kim, J., & Nam, B. H. (2017). Investigation on impacts of municipal solid waste incineration bottom ash on cement hydration. ACI Materials Journal, 114(5), 701–711. doi:10.14359/51689712.
[42] Olubajo, O., Osha, O., El-Nafaty, U., & Adamu, H. (2014). Effect of water-cement ratio on the mechanical properties of blended cement containing bottom ash and limestone. Civil and Environmental Research, 6(12), 1-9.
[43] Gencel, O., Kazmi, S. M. S., Munir, M. J., Kaplan, G., Bayraktar, O. Y., Yarar, D. O., Karimipour, A., & Ahmad, M. R. (2021). Influence of bottom ash and polypropylene fibers on the physico-mechanical, durability and thermal performance of foam concrete: An experimental investigation. Construction and Building Materials, 306, 124887. doi:10.1016/j.conbuildmat.2021.124887.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.