Bond-Slippage Characteristics between Carbon Fiber Reinforced Polymer Sheet and Heat-Damaged Geopolymer Concrete

Esmail A. Alshuqari, Abdulkadir Çevik

Abstract


The present study investigates the behavior of bond slip between carbon fiber reinforced polymer (CFRP) sheets and heat-damaged geopolymer concrete specimens that have been exposed to various elevated temperatures (20°C, 200°C, 400°C, and 600°C). The research aims to address the challenges posed by elevated temperatures on the bond strength and to highlight our original achievements in understanding and mitigating these effects. To assess the effect of different CFRP bonding widths and lengths, geopolymer concrete specimens were cast and bonded to sheets of CFRP. A total of 32 samples were tested under double-shear tension, examining the mechanical properties of geopolymer concrete, failure modes, bond force-slip curves, ultimate bond force and slip, stiffness, energy absorption, and scanning electron microscopy (SEM) analysis. The study found that temperatures up to 200°C caused a slight decline in mechanical properties and bond-slip behavior, with a 5% decrease in bond force and slippage. At 400°C, bond force and slippage reduced by 16%. Exposure to 600°C led to a significant 42% reduction in bond-slip behavior. The developed bond slippage model showed good agreement with experimental results, providing a valuable tool for predicting bond behavior under high-temperature conditions.

 

Doi: 10.28991/CEJ-2024-010-07-03

Full Text: PDF


Keywords


Bond-Slip Behavior; Heat-Damaged Geopolymer Concrete; Carbon Fiber Reinforced Polymer (CFRP) Sheet; Elevated Temperatures.

References


Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. doi:10.1016/j.conbuildmat.2014.07.003.

Davidovits, J. (1994). Global warming impact on the cement and aggregates industries. World Resource Review, 6(2), 263-278.

Chen, J., Shen, L., Song, X., Shi, Q., & Li, S. (2017). An empirical study on the CO2 emissions in the Chinese construction industry. Journal of Cleaner Production, 168, 645–654. doi:10.1016/j.jclepro.2017.09.072.

Davidovits, J. (1989). Geopolymers and geopolymeric materials. Journal of Thermal Analysis, 35(2), 429–441. doi:10.1007/BF01904446.

Davidovits, J. (1991). Geopolymers - Inorganic polymeric new materials. Journal of Thermal Analysis, 37(8), 1633–1656. doi:10.1007/BF01912193.

Tanyildizi, H., & Yonar, Y. (2016). Mechanical properties of geopolymer concrete containing polyvinyl alcohol fiber exposed to high temperature. Construction and Building Materials, 126, 381–387. doi:10.1016/j.conbuildmat.2016.09.001.

Ramujee, Kolli., & PothaRaju, M. (2017). Mechanical Properties of Geopolymer Concrete Composites. Materials Today: Proceedings, 4(2), 2937–2945. doi:10.1016/j.matpr.2017.02.175.

Szabó, R., Dolgos, F., Debreczeni, Á., & Mucsi, G. (2022). Characterization of mechanically activated fly ash-based lightweight geopolymer composite prepared with ultrahigh expanded perlite content. Ceramics International, 48(3), 4261–4269. doi:10.1016/j.ceramint.2021.10.218.

Tale Masoule, M. S., Bahrami, N., Karimzadeh, M., Mohasanati, B., Shoaei, P., Ameri, F., & Ozbakkaloglu, T. (2022). Lightweight geopolymer concrete: A critical review on the feasibility, mixture design, durability properties, and microstructure. Ceramics International, 48(8), 10347–10371. doi:10.1016/j.ceramint.2022.01.298.

Luhar, S., Nicolaides, D., & Luhar, I. (2021). Fire Resistance Behaviour of Geopolymer Concrete: An Overview. Buildings, 11(3), 82. doi:10.3390/buildings11030082.

Abd Razak, S. N., Shafiq, N., Guillaumat, L., Farhan, S. A., & Lohana, V. K. (2022). Fire-Exposed Fly-Ash-Based Geopolymer Concrete: Effects of Burning Temperature on Mechanical and Microstructural Properties. Materials, 15(5), 1884. doi:10.3390/ma15051884.

Cao, V. D., Pilehvar, S., Salas-Bringas, C., Szczotok, A. M., Rodriguez, J. F., Carmona, M., Al-Manasir, N., & Kjøniksen, A. L. (2017). Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications. Energy Conversion and Management, 133, 56–66. doi:10.1016/j.enconman.2016.11.061.

Mane, S., & Jadhav, H. (2012). Investigation of geopolymer mortar and concrete under high temperature. Magnesium, 1(5), 384-390.

Hassan, A., Arif, M., & Shariq, M. (2020). Mechanical Behaviour and Microstructural Investigation of Geopolymer Concrete After Exposure to Elevated Temperatures. Arabian Journal for Science and Engineering, 45(5), 3843–3861. doi:10.1007/s13369-019-04269-9.

Mohmmad, S. H., Gülşan, M. E., & Çevik, A. (2022). Behaviour of Geopolymer Concrete Two-Way Slabs Reinforced by FRP Bars After Exposure to Elevated Temperatures. Arabian Journal for Science and Engineering, 47(10), 12399–12421. doi:10.1007/s13369-021-06411-y.

Kadhim, S., Çevik, A., Niş, A., Bakbak, D., & Aljanabi, M. (2022). Mechanical behavior of fiber reinforced slag-based geopolymer mortars incorporating artificial lightweight aggregate exposed to elevated temperatures. Construction and Building Materials, 315. doi:10.1016/j.conbuildmat.2021.125766.

Trentin, C., & Casas, J. R. (2015). Safety factors for CFRP strengthening in bending of reinforced concrete bridges. Composite Structures, 128, 188–198. doi:10.1016/j.compstruct.2015.03.048.

Chen, W., Pham, T. M., Sichembe, H., Chen, L., & Hao, H. (2018). Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet. Composites Part B: Engineering, 134, 114–126. doi:10.1016/j.compositesb.2017.09.053.

Al-Rousan, R. Z., Alhassan, M. A., & AlShuqari, E. A. (2018). Behavior of plain concrete beams with DSSF strengthened in flexure with anchored CFRP sheets—Effects of DSSF content on the bonding length of CFRP sheets. Case Studies in Construction Materials, 9, e00195. doi:10.1016/j.cscm.2018.e00195.

Al-Abdwais, A. H. (2023). Experimental and Numerical Assessment of Bonding Between Geopolymer Concrete and CFRP Sheet Using NSM Techniques. Civil and Environmental Engineering, 19(2), 676–691. doi:10.2478/cee-2023-0061.

Lei, M., Wang, X., Chen, J., Huang, H., Lin, J., Yan, Z., & Wu, Z. (2024). Bond behavior of the FRP grid-concrete interface with geopolymer mortar as an adhesive. Journal of Building Engineering, 87, 109120. doi:10.1016/j.jobe.2024.109120.

Li, W., Li, S., Lu, Y., & Liu, Z. (2024). Bond properties of steel bar with engineered geopolymer composites under monotonic load. Structural Concrete, 1-23. doi:10.1002/suco.202300689.

Khan, Q. S., Akbar, H., Qazi, A. U., Kazmi, S. M. S., & Munir, M. J. (2024). Bond Stress Behavior of a Steel Reinforcing Bar Embedded in Geopolymer Concrete Incorporating Natural and Recycled Aggregates. Infrastructures, 9(6), 93. doi:10.3390/infrastructures9060093.

Niyazuddin, & Umesh, B. (2024). Experimental investigation on bond behaviour of the GFRP bars with normal and high strength geopolymer concrete. Construction and Building Materials, 429, 136395. doi:10.1016/j.conbuildmat.2024.136395.

Zhao, J., Wang, S., Wang, Z., Wang, K., & Fu, C. (2023). Bond performance between FRP bars and geopolymer concrete after elevated temperature exposure. Construction and Building Materials, 384, 131476. doi:10.1016/j.conbuildmat.2023.131476.

Nakaba, K., Kanakubo, T., Furuta, T., & Yoshizawa, H. (2001). Bond behavior between fiber-reinforced polymer laminates and concrete. ACI Structural Journal, 98(3), 359–367. doi:10.14359/10224.

Mensah, C., Wang, Z., Bonsu, A. O., & Liang, W. (2020). Effect of different bond parameters on the mechanical properties of FRP and concrete interface. Polymers, 12(11), 2466. doi:10.3390/polym12112466.

Ben Ouezdou, M., Belarbi, A., & Bae, S.-W. (2009). Effective Bond Length of FRP Sheets Externally Bonded to Concrete. International Journal of Concrete Structures and Materials, 3(2), 127–131. doi:10.4334/ijcsm.2009.3.2.127.

Hosseini, A., & Mostofinejad, D. (2014). Effective bond length of FRP-to-concrete adhesively-bonded joints: Experimental evaluation of existing models. International Journal of Adhesion and Adhesives, 48, 150–158. doi:10.1016/j.ijadhadh.2013.09.022.

Wang, H. T., Liu, S. S., Liu, Q. L., Pang, Y. Y., & Shi, J. W. (2021). Influences of the joint and epoxy adhesive type on the CFRP-steel interfacial behavior. Journal of Building Engineering, 43, 103167. doi:10.1016/j.jobe.2021.103167.

Irshidat, M. R., & Al-Saleh, M. H. (2016). Effect of using carbon nanotube modified epoxy on bond-slip behavior between concrete and FRP sheets. Construction and Building Materials, 105, 511–518. doi:10.1016/j.conbuildmat.2015.12.183.

Alhassan, M. A., Al Rousan, R. Z., & Al Shuqari, E. A. (2019). Bond-slip behavior between fiber reinforced concrete and CFRP composites. Ain Shams Engineering Journal, 10(2), 359–367. doi:10.1016/j.asej.2019.03.001.

Al-Rousan, R. Z., & AL-Tahat, M. F. (2019). Consequence of surface preparation techniques on the bond behavior between concrete and CFRP composites. Construction and Building Materials, 212, 362–374. doi:10.1016/j.conbuildmat.2019.03.299.

Haddad, R. H., & Al-Rousan, R. Z. (2016). An anchorage system for CFRP strips bonded to thermally shocked concrete. International Journal of Adhesion and Adhesives, 71, 10–22. doi:10.1016/j.ijadhadh.2016.08.003.

Al-Rousan, R., & Al-Tahat, M. (2020). An anchoring groove technique to enhance the bond behavior between heat-damaged concrete and CFRP composites. Buildings, 10(12), 232. doi:10.3390/buildings10120232.

Haddad, R. H., Al-Rousan, R., & Almasry, A. (2013). Bond-slip behavior between carbon fiber reinforced polymer sheets and heat-damaged concrete. Composites Part B: Engineering, 45(1), 1049–1060. doi:10.1016/j.compositesb.2012.09.010.

Alshuqari, E. A., & Çevik, A. (2022). Behavior of bond-slip relationship of lightweight and normal weight geopolymer with various FRP sheets using end-groove anchorage. Construction and Building Materials, 343. doi:10.1016/j.conbuildmat.2022.128060.

Alhamad, A., Yehia, S., Lublóy, É., & Elchalakani, M. (2022). Performance of Different Concrete Types Exposed to Elevated Temperatures: A Review. Materials, 15(14), 5032. doi:10.3390/ma15145032.

Turkey, F. A., Beddu, S. B., Ahmed, A. N., & Al-Hubboubi, S. K. (2022). Effect of high temperatures on the properties of lightweight geopolymer concrete based fly ash and glass powder mixtures. Case Studies in Construction Materials, 17, 1489. doi:10.1016/j.cscm.2022.e01489.

BS EN 1992-1-2:2004. (2004). Design of concrete structures - Part 1-2: General rules - Structural fire design. British Standard Institute (BSI), London, United Kingdom.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-07-03

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Esmail A. Alshuqari, Abdulkadir Çevik

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message