Comparison of Thermophysical Properties of PIM Feedstocks with Polyoxymethylene and Wax-Polyolefin Binders

Alexander N. Muranov, Maxim A. Kocharov, Maxim S. Mikhailov

Abstract


One of the high-performance technologies for the serial production of small-sized metal and ceramic complex-profile parts is powder injection molding (PIM). The most industrially demanded types of polymer binder in PIM technology are polyoxymethylene-based compositions and wax-polyolefin mixtures. Despite the large number of studies devoted to different compositions of polymer binder for PIM technology, the actual task is still a comparative analysis of the properties of different binder types to determine their advantages and disadvantages, as well as the optimization of the used compositions. In this regard, this study aims at a comparative analysis of the thermophysical properties of the most demanded feedstocks with binder based on polyoxymethylene and wax-polyolefin mixtures under the condition of using identical steel powder filler. The specific heat capacity, temperatures, and heat of phase transitions, as well as the thermal inertia and effective thermal conductivity of the compared types of feedstocks, were determined as a result of the calculation-experimental study. The obtained data can replenish the knowledge bases necessary for simulation modeling and optimizing powder molding processes of various products made of 42CrMo4 steel. As a result of a comparative analysis of the thermophysical properties of feedstocks with identical powders, the kinetic effects in the thermal processes of forming feedstocks with polyoxymethylene are less significant than those in analogs with wax-polyolefin binder, which facilitates their moldability. Thus, the feedstock with polyoxymethylene has a significantly higher rate of temperature field leveling than the analogs with wax-polyolefin binder. Because of the insignificant difference in specific heat capacity, feedstocks based on polyoxymethylene have 1.5 times higher effective thermal conductivity and approximately 20% higher thermal inertia than feedstocks with identical powder filler and binder in the form of a wax-polyolefin mixture. The technological advantages of feedstocks with a wax-polyolefin binder include the possibility of processing at lower temperatures.

 

Doi: 10.28991/CEJ-2024-010-06-05

Full Text: PDF


Keywords


Thermophysical Properties; Powder-Polymer Mixture; Powder Injection Molding; Polyoxymeth-Ylene; Polyolefins; Waxes.

References


Gonzlez-Gutirrez, J., Beulke, G., & Emri, I. (2012). Powder Injection Molding of Metal and Ceramic Parts. Some Critical Issues for Injection Molding. IntechOpen, London, United Kingdom. doi:10.5772/38070.

Currie, E. P. K., Norde, W., & Cohen Stuart, M. A. (2003). Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties. Advances in Colloid and Interface Science, 100–102, 205–265. doi:10.1016/s0001-8686(02)00061-1.

Kutsbakh, A. A., Muranov, A. N., Semenov, A. B., & Semenov, B. I. (2019). Outstanding problems of numerical simulation of the process of injection molding of PIM-feedstocks and component quality. IOP Conference Series: Materials Science and Engineering, 525, 012031. doi:10.1088/1757-899x/525/1/012031.

Heaney, D. F. (2012). Designing for Metal Injection Molding (MIM). Handbook of Metal Injection Molding, 29–49. doi:10.1533/9780857096234.1.29.

Semenov, A. B., Kutsbakh, A. A., Muranov, A. N., & Semenov, B. I. (2019). Metallurgy of thixotropic materials: The experience of organizing the processing of structural materials in engineering Thixo and MIM methods. IOP Conference Series: Materials Science and Engineering, 683(1), 12056. doi:10.1088/1757-899X/683/1/012056.

Urtekin, L., Yılan, F., & Şahin, İ. B. (2023). Optimization of Rheology Parameters for Feedstock by Powder Injection Molding (PIM) Via Taguchi Analysis. International Journal of Integrated Engineering, 15(7), 89–101. doi:10.30880/IJIE.2023.15.07.009.

Haghniaz, F., Delbergue, D., Côté, R., & Demers, V. (2023). Mold filling behaviour of LPIM feedstocks using numerical simulations and real-scale injections. Powder Metallurgy, 66(5), 436–449. doi:10.1080/00325899.2023.2218678.

Nguyen, T. K., & Pham, A. D. (2023). An Investigation on Pressure-Specific Volume–Temperature Behaviors of a Thermoplastic Under Industrial Conditions Using a Hot Runner Manifold. International Journal of Precision Engineering and Manufacturing, 24(10), 1845–1853. doi:10.1007/s12541-023-00847-y.

Muranov, A. N., Semenov, A. B., Kutsbakh, A. A., & Semenov, B. I. (2020). Specific Volume and Features of Compaction in Molding of Powder–Polymer Mixtures with Wax–Polypropylene Binder. Polymer Science - Series D, 13(2), 228–234. doi:10.1134/S1995421220020173.

Kostin, D. V., Parkhomenko, A. V., Amosov, A. P., Samboruk, A. R., & Chemashkin, A. V. (2016). Development of feedstock of tungsten-nickel-iron- polyformaldehyde for MIM technology. IOP Conference Series: Materials Science and Engineering, 156(1), 12033. doi:10.1088/1757-899X/156/1/012033.

Myachin, Y. V., Darenskaya, E. A., Vaulina, O. Y., Buyakova, S. P., Turuntaev, I. V., & Kulkov, S. N. (2017). Structure and properties of steel produced by metal injection molding. Inorganic Materials: Applied Research, 8(2), 331–334. doi:10.1134/S2075113317020162.

Vaulina, O. Y., Darenskaia, E. A., Myachin, Y. V., Vasilyeva, I. E., & Kulkov, S. N. (2017). Influence of mechanical activation of steel powder on its properties. IOP Conference Series: Materials Science and Engineering, 175(1), 12038. doi:10.1088/1757-899X/175/1/012038.

Darenskaia, E. A., Vaulina, O. Y., Myachin, Y. V., & Kulkov, S. N. (2017). Influence of binding composition on the structure and properties of steel work-pieces obtained by injection moulding. IOP Conference Series: Materials Science and Engineering, 175(1), 12035. doi:10.1088/1757-899X/175/1/012035.

Parkhomenko, A. V., Amosov, A. P., Samboruk, A. R., Ignatov, S. V., Kostin, D. V., & Shul’timova, A. S. (2015). Development of domestic powder granulate with a polyformaldehyde-based binder for MIM technology. Russian Journal of Non-Ferrous Metals, 56(1), 68–72. doi:10.3103/S1067821215010149.

Momeni, V., Hufnagl, M., Shahroodi, Z., Gonzalez-Gutierrez, J., Schuschnigg, S., Kukla, C., & Holzer, C. (2023). Research Progress on Low-Pressure Powder Injection Molding. Materials, 16(1), 379. doi:10.3390/ma16010379.

Wang, J. (Ed.). (2012). Some Critical Issues for Injection Molding. IntechOpen, London, United Kingdom. doi:10.5772/2294.

Kate, K. H., Onbattuvelli, V. P., Enneti, R. K., Lee, S. W., Park, S. J., & Atre, S. V. (2012). Measurements of powder-polymer mixture properties and their use in powder injection molding simulations for aluminum nitride. JOM, 64(9), 1048–1058. doi:10.1007/s11837-012-0404-3.

Kate, K. H., Enneti, R. K., Onbattuvelli, V. P., & Atre, S. V. (2013). Feedstock properties and injection molding simulations of bimodal mixtures of nanoscale and microscale aluminum nitride. Ceramics International, 39(6), 6887–6897. doi:10.1016/j.ceramint.2013.02.023.

Kate, K. H., Enneti, R. K., Park, S. J., German, R. M., & Atre, S. V. (2014). Predicting powder-polymer mixture properties for PIM design. Critical Reviews in Solid State and Materials Sciences, 39(3), 197–214. doi:10.1080/10408436.2013.808986.

Archodoulaki, V., & Lüftl, S. (2014). Thermal Properties and Flammability of Polyoxymethylene. Polyoxymethylene Handbook, 257–275, John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118914458.ch10.

Lebedev, S. M., Gefle, O. S., Amitov, E. T., Zhuravlev, D. V., & Berchuk, D. Y. (2018). Thermophysical, Rheological and Morphological Properties of Polyoxymethylene Polymer Composite for Additive Technologies. Russian Physics Journal, 61(6), 1029–1033. doi:10.1007/s11182-018-1492-5.

Durmagambetov, A. (2010). Application of analytic functions to the global solvability of the Cauchy problem for equations of Navier-Stokes. Natural Science, 2(4), 338–356. doi:10.4236/ns.2010.24042.

Weidenfeller, B., Höfer, M., & Schilling, F. R. (2004). Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites Part A: Applied Science and Manufacturing, 35(4), 423–429. doi:10.1016/j.compositesa.2003.11.005.

Progelhof, R. C., Throne, J. L., & Ruetsch, R. R. (1976). Methods for predicting the thermal conductivity of composite systems: A review. Polymer Engineering & Science, 16(9), 615–625. doi:10.1002/pen.760160905.

Zhu, S., Wu, S., Fu, Y., & Guo, S. (2024). Prediction of particle-reinforced composite material properties based on an improved Halpin-Tsai model. AIP Advances, 14(4). doi:10.1063/5.0206774.

Muranov, A. N., Semenov, A. B., Marakhovskii, P. S., Chutskova, E. Y., & Semenov, B. I. (2019). Thermophysical Properties of Powder-Polymer Mixture for Fabrication of Parts of 42CrMo4 Steel by the MIM Method. Inorganic Materials: Applied Research, 10(2), 285–290. doi:10.1134/S207511331902028X.

Xu, J. Z., Gao, B. Z., & Kang, F. Y. (2016). A reconstruction of Maxwell model for effective thermal conductivity of composite materials. Applied Thermal Engineering, 102, 972–979. doi:10.1016/j.applthermaleng.2016.03.155.

Mamunya, Y. P., Davydenko, V. V., Pissis, P., & Lebedev, E. V. (2002). Electrical and thermal conductivity of polymers filled with metal powders. European Polymer Journal, 38(9), 1887–1897. doi:10.1016/S0014-3057(02)00064-2.

Markov, A. V. (2008). Thermal conductivity of polymers filled with dispersed particles: A model. Polymer Science Series A, 50(4), 471–479. doi:10.1134/s0965545x08040160.

Kowalski, L., Duszczyk, J., & Katgerman, L. (1999). Thermal conductivity of metal powder-polymer feedstock for powder injection moulding. Journal of Materials Science, 34(1), 1–5. doi:10.1023/A:1004424401427.

Wada, Y., Nagasaka, Y., & Nagashima, A. (1985). Measurements and correlation of the thermal conductivity of liquid n-paraffin hydrocarbons and their binary and ternary mixtures. International Journal of Thermophysics, 6(3), 251–265. doi:10.1007/BF00522147.

Wang, J., Xie, H., Guo, Z., Guan, L., & Li, Y. (2014). Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Applied Thermal Engineering, 73(2), 1541–1547. doi:10.1016/j.applthermaleng.2014.05.078.

Bharathiraja, R., Ramkumar, T., Selvakumar, M., & Radhika, N. (2024). Thermal characteristics enhancement of Paraffin Wax Phase Change Material (PCM) for thermal storage applications. Renewable Energy, 222, 119986. doi:10.1016/j.renene.2024.119986.

Sadaf, M., Cano, S., Bragaglia, M., Schuschnigg, S., Kukla, C., Holzer, C., Vály, L., Kitzmantel, M., Nanni, F., & Gonzalez-Gutierrez, J. (2024). Comparative analysis of binder systems in copper feedstocks for metal extrusion additive manufacturing and metal injection moulding. Journal of Materials Research and Technology, 29, 4433–4444. doi:10.1016/j.jmrt.2024.02.163.

Lim, K., Hayat, M. D., Jena, K. D., Zhang, W., Li, L., & Cao, P. (2023). Interactions of polymeric components in a POM-based binder system for titanium metal injection moulding feedstocks. Powder Metallurgy, 66(4), 355–364. doi:10.1080/00325899.2023.2194478.

Arman, S., & Lazoglu, I. (2023). A comprehensive review of injection mold cooling by using conformal cooling channels and thermally enhanced molds. International Journal of Advanced Manufacturing Technology, 127(5–6), 2035–2106. doi:10.1007/s00170-023-11593-w.

Wang, S. W., Zhang, Y. L., Wu, C., Xiao, L., Lin, G. M., Hu, Y. B., Hao, G. Z., Guo, H., Zhang, G. P., & Jiang, W. (2023). Equal-Material Manufacturing of a Thermoplastic Melt-Cast Explosive Using Thermal-Pressure Coupling Solidification Treatment Technology. ACS Omega, 8(18), 16251–16262. doi:10.1021/acsomega.3c00709.

Yu, M., Qi, L., Cheng, L., Min, W., Mei, Z., Gao, R., & Sun, Z. (2023). The Effect of Cooling Rates on Thermal, Crystallization, Mechanical and Barrier Properties of Rotational Molding Polyamide 11 as the Liner Material for High-Capacity High-Pressure Vessels. Molecules, 28(6), 2425. doi:10.3390/molecules28062425.

Lin, Q., Allanic, N., Mousseau, P., Girault, M., & Deterre, R. (2023). Monitoring and viscosity identification via temperature measurement on a polymer injection molding line. International Journal of Heat and Mass Transfer, 206, 123954. doi:10.1016/j.ijheatmasstransfer.2023.123954.

Alexandrov, I., Malysheva, G., & Guzeva, T. (2012). A Qualitative Visual Analysis of the Fractured Surfaces of Epoxy/Carbon Fibre Composite Prepared by the Melt and the Solution Technologies. 2nd International Conference on Advanced Composite Materials and Technologies for Aerospace Applications, 11-13 June, 2012, Wrexham, United Kingdom.

Krause, B., & Pötschke, P. (2016). Electrical and thermal conductivity of polypropylene filled with combinations of carbon fillers. AIP Conference Proceedings. doi:10.1063/1.4965494.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-06-05

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Alexander N. Muranov, Maxim A. Kocharov, Maxim S. Mikhailov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message