Comparison of Thermophysical Properties of PIM Feedstocks with Polyoxymethylene and Wax-Polyolefin Binders
Abstract
Doi: 10.28991/CEJ-2024-010-06-05
Full Text: PDF
Keywords
References
Gonzlez-Gutirrez, J., Beulke, G., & Emri, I. (2012). Powder Injection Molding of Metal and Ceramic Parts. Some Critical Issues for Injection Molding. IntechOpen, London, United Kingdom. doi:10.5772/38070.
Currie, E. P. K., Norde, W., & Cohen Stuart, M. A. (2003). Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties. Advances in Colloid and Interface Science, 100–102, 205–265. doi:10.1016/s0001-8686(02)00061-1.
Kutsbakh, A. A., Muranov, A. N., Semenov, A. B., & Semenov, B. I. (2019). Outstanding problems of numerical simulation of the process of injection molding of PIM-feedstocks and component quality. IOP Conference Series: Materials Science and Engineering, 525, 012031. doi:10.1088/1757-899x/525/1/012031.
Heaney, D. F. (2012). Designing for Metal Injection Molding (MIM). Handbook of Metal Injection Molding, 29–49. doi:10.1533/9780857096234.1.29.
Semenov, A. B., Kutsbakh, A. A., Muranov, A. N., & Semenov, B. I. (2019). Metallurgy of thixotropic materials: The experience of organizing the processing of structural materials in engineering Thixo and MIM methods. IOP Conference Series: Materials Science and Engineering, 683(1), 12056. doi:10.1088/1757-899X/683/1/012056.
Urtekin, L., Yılan, F., & Şahin, İ. B. (2023). Optimization of Rheology Parameters for Feedstock by Powder Injection Molding (PIM) Via Taguchi Analysis. International Journal of Integrated Engineering, 15(7), 89–101. doi:10.30880/IJIE.2023.15.07.009.
Haghniaz, F., Delbergue, D., Côté, R., & Demers, V. (2023). Mold filling behaviour of LPIM feedstocks using numerical simulations and real-scale injections. Powder Metallurgy, 66(5), 436–449. doi:10.1080/00325899.2023.2218678.
Nguyen, T. K., & Pham, A. D. (2023). An Investigation on Pressure-Specific Volume–Temperature Behaviors of a Thermoplastic Under Industrial Conditions Using a Hot Runner Manifold. International Journal of Precision Engineering and Manufacturing, 24(10), 1845–1853. doi:10.1007/s12541-023-00847-y.
Muranov, A. N., Semenov, A. B., Kutsbakh, A. A., & Semenov, B. I. (2020). Specific Volume and Features of Compaction in Molding of Powder–Polymer Mixtures with Wax–Polypropylene Binder. Polymer Science - Series D, 13(2), 228–234. doi:10.1134/S1995421220020173.
Kostin, D. V., Parkhomenko, A. V., Amosov, A. P., Samboruk, A. R., & Chemashkin, A. V. (2016). Development of feedstock of tungsten-nickel-iron- polyformaldehyde for MIM technology. IOP Conference Series: Materials Science and Engineering, 156(1), 12033. doi:10.1088/1757-899X/156/1/012033.
Myachin, Y. V., Darenskaya, E. A., Vaulina, O. Y., Buyakova, S. P., Turuntaev, I. V., & Kulkov, S. N. (2017). Structure and properties of steel produced by metal injection molding. Inorganic Materials: Applied Research, 8(2), 331–334. doi:10.1134/S2075113317020162.
Vaulina, O. Y., Darenskaia, E. A., Myachin, Y. V., Vasilyeva, I. E., & Kulkov, S. N. (2017). Influence of mechanical activation of steel powder on its properties. IOP Conference Series: Materials Science and Engineering, 175(1), 12038. doi:10.1088/1757-899X/175/1/012038.
Darenskaia, E. A., Vaulina, O. Y., Myachin, Y. V., & Kulkov, S. N. (2017). Influence of binding composition on the structure and properties of steel work-pieces obtained by injection moulding. IOP Conference Series: Materials Science and Engineering, 175(1), 12035. doi:10.1088/1757-899X/175/1/012035.
Parkhomenko, A. V., Amosov, A. P., Samboruk, A. R., Ignatov, S. V., Kostin, D. V., & Shul’timova, A. S. (2015). Development of domestic powder granulate with a polyformaldehyde-based binder for MIM technology. Russian Journal of Non-Ferrous Metals, 56(1), 68–72. doi:10.3103/S1067821215010149.
Momeni, V., Hufnagl, M., Shahroodi, Z., Gonzalez-Gutierrez, J., Schuschnigg, S., Kukla, C., & Holzer, C. (2023). Research Progress on Low-Pressure Powder Injection Molding. Materials, 16(1), 379. doi:10.3390/ma16010379.
Wang, J. (Ed.). (2012). Some Critical Issues for Injection Molding. IntechOpen, London, United Kingdom. doi:10.5772/2294.
Kate, K. H., Onbattuvelli, V. P., Enneti, R. K., Lee, S. W., Park, S. J., & Atre, S. V. (2012). Measurements of powder-polymer mixture properties and their use in powder injection molding simulations for aluminum nitride. JOM, 64(9), 1048–1058. doi:10.1007/s11837-012-0404-3.
Kate, K. H., Enneti, R. K., Onbattuvelli, V. P., & Atre, S. V. (2013). Feedstock properties and injection molding simulations of bimodal mixtures of nanoscale and microscale aluminum nitride. Ceramics International, 39(6), 6887–6897. doi:10.1016/j.ceramint.2013.02.023.
Kate, K. H., Enneti, R. K., Park, S. J., German, R. M., & Atre, S. V. (2014). Predicting powder-polymer mixture properties for PIM design. Critical Reviews in Solid State and Materials Sciences, 39(3), 197–214. doi:10.1080/10408436.2013.808986.
Archodoulaki, V., & Lüftl, S. (2014). Thermal Properties and Flammability of Polyoxymethylene. Polyoxymethylene Handbook, 257–275, John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118914458.ch10.
Lebedev, S. M., Gefle, O. S., Amitov, E. T., Zhuravlev, D. V., & Berchuk, D. Y. (2018). Thermophysical, Rheological and Morphological Properties of Polyoxymethylene Polymer Composite for Additive Technologies. Russian Physics Journal, 61(6), 1029–1033. doi:10.1007/s11182-018-1492-5.
Durmagambetov, A. (2010). Application of analytic functions to the global solvability of the Cauchy problem for equations of Navier-Stokes. Natural Science, 2(4), 338–356. doi:10.4236/ns.2010.24042.
Weidenfeller, B., Höfer, M., & Schilling, F. R. (2004). Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites Part A: Applied Science and Manufacturing, 35(4), 423–429. doi:10.1016/j.compositesa.2003.11.005.
Progelhof, R. C., Throne, J. L., & Ruetsch, R. R. (1976). Methods for predicting the thermal conductivity of composite systems: A review. Polymer Engineering & Science, 16(9), 615–625. doi:10.1002/pen.760160905.
Zhu, S., Wu, S., Fu, Y., & Guo, S. (2024). Prediction of particle-reinforced composite material properties based on an improved Halpin-Tsai model. AIP Advances, 14(4). doi:10.1063/5.0206774.
Muranov, A. N., Semenov, A. B., Marakhovskii, P. S., Chutskova, E. Y., & Semenov, B. I. (2019). Thermophysical Properties of Powder-Polymer Mixture for Fabrication of Parts of 42CrMo4 Steel by the MIM Method. Inorganic Materials: Applied Research, 10(2), 285–290. doi:10.1134/S207511331902028X.
Xu, J. Z., Gao, B. Z., & Kang, F. Y. (2016). A reconstruction of Maxwell model for effective thermal conductivity of composite materials. Applied Thermal Engineering, 102, 972–979. doi:10.1016/j.applthermaleng.2016.03.155.
Mamunya, Y. P., Davydenko, V. V., Pissis, P., & Lebedev, E. V. (2002). Electrical and thermal conductivity of polymers filled with metal powders. European Polymer Journal, 38(9), 1887–1897. doi:10.1016/S0014-3057(02)00064-2.
Markov, A. V. (2008). Thermal conductivity of polymers filled with dispersed particles: A model. Polymer Science Series A, 50(4), 471–479. doi:10.1134/s0965545x08040160.
Kowalski, L., Duszczyk, J., & Katgerman, L. (1999). Thermal conductivity of metal powder-polymer feedstock for powder injection moulding. Journal of Materials Science, 34(1), 1–5. doi:10.1023/A:1004424401427.
Wada, Y., Nagasaka, Y., & Nagashima, A. (1985). Measurements and correlation of the thermal conductivity of liquid n-paraffin hydrocarbons and their binary and ternary mixtures. International Journal of Thermophysics, 6(3), 251–265. doi:10.1007/BF00522147.
Wang, J., Xie, H., Guo, Z., Guan, L., & Li, Y. (2014). Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles. Applied Thermal Engineering, 73(2), 1541–1547. doi:10.1016/j.applthermaleng.2014.05.078.
Bharathiraja, R., Ramkumar, T., Selvakumar, M., & Radhika, N. (2024). Thermal characteristics enhancement of Paraffin Wax Phase Change Material (PCM) for thermal storage applications. Renewable Energy, 222, 119986. doi:10.1016/j.renene.2024.119986.
Sadaf, M., Cano, S., Bragaglia, M., Schuschnigg, S., Kukla, C., Holzer, C., Vály, L., Kitzmantel, M., Nanni, F., & Gonzalez-Gutierrez, J. (2024). Comparative analysis of binder systems in copper feedstocks for metal extrusion additive manufacturing and metal injection moulding. Journal of Materials Research and Technology, 29, 4433–4444. doi:10.1016/j.jmrt.2024.02.163.
Lim, K., Hayat, M. D., Jena, K. D., Zhang, W., Li, L., & Cao, P. (2023). Interactions of polymeric components in a POM-based binder system for titanium metal injection moulding feedstocks. Powder Metallurgy, 66(4), 355–364. doi:10.1080/00325899.2023.2194478.
Arman, S., & Lazoglu, I. (2023). A comprehensive review of injection mold cooling by using conformal cooling channels and thermally enhanced molds. International Journal of Advanced Manufacturing Technology, 127(5–6), 2035–2106. doi:10.1007/s00170-023-11593-w.
Wang, S. W., Zhang, Y. L., Wu, C., Xiao, L., Lin, G. M., Hu, Y. B., Hao, G. Z., Guo, H., Zhang, G. P., & Jiang, W. (2023). Equal-Material Manufacturing of a Thermoplastic Melt-Cast Explosive Using Thermal-Pressure Coupling Solidification Treatment Technology. ACS Omega, 8(18), 16251–16262. doi:10.1021/acsomega.3c00709.
Yu, M., Qi, L., Cheng, L., Min, W., Mei, Z., Gao, R., & Sun, Z. (2023). The Effect of Cooling Rates on Thermal, Crystallization, Mechanical and Barrier Properties of Rotational Molding Polyamide 11 as the Liner Material for High-Capacity High-Pressure Vessels. Molecules, 28(6), 2425. doi:10.3390/molecules28062425.
Lin, Q., Allanic, N., Mousseau, P., Girault, M., & Deterre, R. (2023). Monitoring and viscosity identification via temperature measurement on a polymer injection molding line. International Journal of Heat and Mass Transfer, 206, 123954. doi:10.1016/j.ijheatmasstransfer.2023.123954.
Alexandrov, I., Malysheva, G., & Guzeva, T. (2012). A Qualitative Visual Analysis of the Fractured Surfaces of Epoxy/Carbon Fibre Composite Prepared by the Melt and the Solution Technologies. 2nd International Conference on Advanced Composite Materials and Technologies for Aerospace Applications, 11-13 June, 2012, Wrexham, United Kingdom.
Krause, B., & Pötschke, P. (2016). Electrical and thermal conductivity of polypropylene filled with combinations of carbon fillers. AIP Conference Proceedings. doi:10.1063/1.4965494.
DOI: 10.28991/CEJ-2024-010-06-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Alexander N. Muranov, Maxim A. Kocharov, Maxim S. Mikhailov
This work is licensed under a Creative Commons Attribution 4.0 International License.