Artificial Intelligence for Application in Water Engineering: The Use of ANN to Determine Water Quality Index in Rivers

Rabah Ismail, Adnan Rawashdeh, Hashem Al-Mattarneh, Randa Hatamleh, Dua’a B. Telfah, Aiman Jaradat

Abstract


To improve water quality, total daily loads must be established, and this requires determining the quality of the water in rivers, storage tanks, ponds, and coastal areas. Current methods to evaluate water quality involve the collection of water samples for subsequent laboratory analysis. Although these technologies offer precise measurements for a specific location and time, they are expensive, time-consuming, and do not provide the continuous, temporal, or spatial conditions of water quality that are required for managing, assessing, and monitoring water quality. In order to calculate the water quality, the water quality index is modeled using artificial neural network models that incorporate feedforward neural network backpropagation neural networks and radial neural networks. The water quality index of Malaysia’s Klang River was determined by training the artificial network using six major sub-quality parameters. Compared to the current method, the artificial neural network simplifies and expedites the computation of the water quality index. The artificial neural network method could provide a significant saving in terms of money and time while offering a robust assessment of water quality. The proposed method could also be used as an early warning system for pollution of water bodies. The best artificial neural network was the feedforward neural network with one hidden layer containing 5 neurons. Furthermore, conventional approaches for calculating the water quality index rely on empirical equations, often introducing a high degree of approximation and uncertainty into the results. Moreover, these equations cannot be applied when some parameters are not measured. In contrast, the artificial neural network methods and technique offer an efficient and straightforward process for estimating and creating prediction models for water quality index.

 

Doi: 10.28991/CEJ-2024-010-07-012

Full Text: PDF


Keywords


Artificial Intelligence; Artificial Neural Network; Water Quality Index; River; Water Quality Class.

References


Wan Mohtar, W. H. M., Abdul Maulud, K. N., Muhammad, N. S., Sharil, S., & Yaseen, Z. M. (2019). Spatial and temporal risk quotient-based river assessment for water resources management. Environmental Pollution, 248, 133–144. doi:10.1016/j.envpol.2019.02.011.

Caddis, B., Nielsen, C., Hong, W., Anun Tahir, P., & Yenn Teo, F. (2012). Guidelines for floodplain development – a Malaysian case study. International Journal of River Basin Management, 10(2), 161–170. doi:10.1080/15715124.2012.688750.

Sharma, A., Naidu, M., & Sargaonkar, A. (2013). Development of computer automated decision support system for surface water quality assessment. Computers & Geosciences, 51, 129–134. doi:10.1016/j.cageo.2012.09.007.

Luo, P., He, B., Takara, K., Razafindrabe, B. H. N., Nover, D., & Yamashiki, Y. (2011). Spatiotemporal trend analysis of recent river water quality conditions in Japan. Journal of Environmental Monitoring, 13(10), 2819–2829. doi:10.1039/c1em10339c.

Avvannavar, S. M., & Shrihari, S. (2007). Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environmental Monitoring and Assessment, 143(1–3), 279–290. doi:10.1007/s10661-007-9977-7.

Wang, M., Bodirsky, B. L., Rijneveld, R., Beier, F., Bak, M. P., Batool, M., Droppers, B., Popp, A., van Vliet, M. T. H., & Strokal, M. (2024). A triple increase in global river basins with water scarcity due to future pollution. Nature Communications, 15(1), 880. doi:10.1038/s41467-024-44947-3.

Mohan Raj, K., & Vairavel, K. S. (2024). Quality index metrics with Bi-GRU-based water quality prediction. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 46(1), 171–187. doi:10.1080/15567036.2023.2272658.

Chidiac, S., El Najjar, P., Ouaini, N., El Rayess, Y., & El Azzi, D. (2023). A comprehensive review of water quality indices (WQIs): history, models, attempts and perspectives. Reviews in Environmental Science and Biotechnology, 22(2), 349–395. doi:10.1007/s11157-023-09650-7.

Murivhami, T., Tartibu, L. K., & Olayode, I. O. (2023). Applications of Artificial Neural Network in the Prediction of Water Quality Index. 2023 14th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa. doi:10.1109/icmimt59138.2023.10199388.

Mamat, N., Mohd Razali, S. F., & Hamzah, F. B. (2023). Enhancement of water quality index prediction using support vector machine with sensitivity analysis. Frontiers in Environmental Science, 10, 1061835. doi:10.3389/fenvs.2022.1061835.

Sidek, L. M., Mohiyaden, H. A., Marufuzzaman, M., Noh, N. S. M., Heddam, S., Ehteram, M., Kisi, O., & Sammen, S. S. (2024). Developing an ensembled machine learning model for predicting water quality index in Johor River Basin. Environmental Sciences Europe, 36(1), 67. doi:10.1186/s12302-024-00897-7.

Diop, M., Mall, I., Sonko, E. H. M., Diop, T., Badji, L., & Mbow, C. (2023). Development and Application of Water Quality Index (WQI) for the Evaluation of the Physico-Chemical Quality of Groundwater in Gold Mining Areas of Southeastern Senegal. Journal of Water Resource and Protection, 15(02), 33–50. doi:10.4236/jwarp.2023.152003.

Muthukumaran, V., & Vinoth kumar, V. (2022). Water Quality Index Process Using Artificial Neural Networks. International Journal of Information Technology, Research and Applications, 1(1), 33–37. doi:10.59461/ijitra.v1i1.12.

Sekarlangit, S., Widodo, C. E., & Tarno, T. (2024). A Comparison of Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM) in River Water Quality Prediction. International Journal of Current Science Research and Review, 7(4), 2000-2005. doi:10.47191/ijcsrr/v7-i4-02.

Štambuk-Giljanović, N. (1999). Water quality evaluation by index in Dalmatia. Water Research, 33(16), 3423–3440. doi:10.1016/S0043-1354(99)00063-9.

Tao, H., Bobaker, A. M., Ramal, M. M., Yaseen, Z. M., Hossain, M. S., & Shahid, S. (2019). Determination of biochemical oxygen demand and dissolved oxygen for semi-arid river environment: application of soft computing models. Environmental Science and Pollution Research, 26(1), 923–937. doi:10.1007/s11356-018-3663-x.

Al-Mattarneh, H., & Alwadie, A. (2016). Development of Low Frequency Dielectric Cell for Water Quality Application. Procedia Engineering, 148, 687–693. doi:10.1016/j.proeng.2016.06.554.

Al-Mattarneh, H., Ismail, R., Nuruddin, M., Shafiq, N., & Dahim, M. (2016). Characterization of Pb and Cd contaminated sandy soil by dielectric means. Civil, Offshore and Environmental Engineering, 327–330.

Fan, X., Lv, S., Xia, C., Ge, D., Liu, C., & Lu, W. (2024). Strength prediction of asphalt mixture under interactive conditions based on BPNN and SVM. Case Studies in Construction Materials, e03489. doi:10.1016/j.cscm.2024.e03489.

Dahim, M., Abuaddous, M., Al-Mattarneh, H., Rawashdeh, A., & Ismail, R. (2021). Enhancement of road pavement material using conventional and nano-crude oil fly ash. Applied Nanoscience (Switzerland), 11(10), 2517–2524. doi:10.1007/s13204-021-02103-z.

Abdullahi, M., Al-Mattarneh, H. M. A., & Mohammed, B. S. (2009). Statistical modeling of lightweight concrete mixtures. European Journal of Scientific Research, 31(1), 124–131.

Hameed, M., Sharqi, S. S., Yaseen, Z. M., Afan, H. A., Hussain, A., & Elshafie, A. (2017). Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia. Neural Computing and Applications, 28(1), 893–905. doi:10.1007/s00521-016-2404-7.

Tiyasha, Tung, T. M., & Yaseen, Z. M. (2020). A survey on river water quality modelling using artificial intelligence models: 2000–2020. Journal of Hydrology, 585, 124670. doi:10.1016/j.jhydrol.2020.124670.

Ho, J. Y., Afan, H. A., El-Shafie, A. H., Koting, S. B., Mohd, N. S., Jaafar, W. Z. B., Lai Sai, H., Malek, M. A., Ahmed, A. N., Mohtar, W. H. M. W., Elshorbagy, A., & El-Shafie, A. (2019). Towards a time and cost-effective approach to water quality index class prediction. Journal of Hydrology, 575, 148–165. doi:10.1016/j.jhydrol.2019.05.016.

Ismail, R., Dahim, M., Jaradat, A., Hatamleh, R., Telfah, D., Abuaddous, M., & Al-Mattarneh, H. (2021). Field Dielectric Sensor for Soil Pollution Application. IOP Conference Series: Earth and Environmental Science, 801(1), 012003. doi:10.1088/1755-1315/801/1/012003.

Zain, M. F. M., Karim, M. R., Islam, M. N., Hossain, M. M., Jamil, M., & Al-Mattarneh, H. M. A. (2015). Prediction of strength and slump of silica fume incorporated high-performance concrete. Asian Journal of Scientific Research, 8(3), 264–277. doi:10.3923/ajsr.2015.264.277.

Abdullahi, M., Al-Mattarneh, H. M. A., & Mohammed, B. S. (2009). A matlab program for diagnosis and adjustment of mix proportions of structural lightweight concrete. European Journal of Scientific Research, 31(1), 106–123.

Dahim, M., Abuaddous, M., Ismail, R., Al-Mattarneh, H., & Jaradat, A. (2020). Using a dielectric capacitance cell to determine the dielectric properties of pure sand artificially contaminated with Pb, Cd, Fe, and Zn. Applied and Environmental Soil Science, 2020(8838054). doi:10.1155/2020/8838054.

Ermeey, A. K., Ghodgaonkar, D. K., & Al-Mattarneh, H. M. A. (2003). Three probe reflectometer algorithms for complex coefficient measurements of water quality at microwave frequencies. Asia-Pacific Conference on Applied Electromagnetics, 2003. APACE 2003. doi:10.1109/apace.2003.1234481.

Lee Yoot Khuan, Hamzah, N., & Jailani, R. (2002). Prediction of water quality index (WQI) based on artificial neural network (ANN). Student Conference on Research and Development. doi:10.1109/scored.2002.1033081.

Almattarneh, H., Alwadie, A., Malkawi, A., & Nuruddin, M. F. (2014). A novel method for monitoring hydration process of cement paste material. Applied Mechanics and Materials, 567, 333–338. doi:10.4028/www.scientific.net/AMM.567.333.

Ministry of Natural Resources and Environment (2006). Malaysia Environmental Quality Report 2006. Department of Environment, Ministry of Natural Resources and Environment, Petaling Jaya, Malaysia.

Gazzaz, N. M., Yusoff, M. K., Aris, A. Z., Juahir, H., & Ramli, M. F. (2012). Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Marine Pollution Bulletin, 64(11), 2409–2420. doi:10.1016/j.marpolbul.2012.08.005.

Cude, C. G. (2001). Oregon water quality index: A tool for evaluating water quality management effectiveness. Journal of the American Water Resources Association, 37(1), 125–137. doi:10.1111/j.1752-1688.2001.tb05480.x.

Boyacioglu, H. (2007). Development of a water quality index based on a European classification scheme. Water SA, 33(1), 101–106. doi:10.4314/wsa.v33i1.47882.

Song, T., & Kim, K. (2009). Development of a water quality loading index based on water quality modeling. Journal of Environmental Management, 90(3), 1534–1543. doi:10.1016/j.jenvman.2008.11.008.

Debels, P., Figueroa, R., Urrutia, R., Barra, R., & Niell, X. (2005). Evaluation of water quality in the Chillán River (Central Chile) using physicochemical parameters and a modified Water Quality Index. Environmental Monitoring and Assessment, 110(1–3), 301–322. doi:10.1007/s10661-005-8064-1.

Liou, S. M., Lo, S. L., & Wang, S. H. (2004). A generalized water quality index for Taiwan. Environmental Monitoring and Assessment, 96(1–3), 35–52. doi:10.1023/B:EMAS.0000031715.83752.a1.

Naji, A., & Ismail, A. (2012). Metals Fractionation and Evaluation of their Risk Connected with Urban and Industrial Influx in the Klang River Surface Sediments, Malaysia. EnvironmentAsia, 5(1), 17-25.

Malik, A., Kumar, A., Kisi, O., & Shiri, J. (2019). Evaluating the performance of four different heuristic approaches with Gamma test for daily suspended sediment concentration modeling. Environmental Science and Pollution Research, 26(22), 22670–22687. doi:10.1007/s11356-019-05553-9.

Sepahvand, A., Singh, B., Sihag, P., Nazari Samani, A., Ahmadi, H., & Fiz Nia, S. (2019). Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR). ISH Journal of Hydraulic Engineering, 27(Sup1), 124–135. doi:10.1080/09715010.2019.1595185.

Alizadeh, M. J., Kavianpour, M. R., Danesh, M., Adolf, J., Shamshirband, S., & Chau, K. W. (2018). Effect of river flow on the quality of estuarine and coastal waters using machine learning models. Engineering Applications of Computational Fluid Mechanics, 12(1), 810–823. doi:10.1080/19942060.2018.1528480.

Olyaie, E., Banejad, H., Chau, K. W., & Melesse, A. M. (2015). A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States. Environmental Monitoring and Assessment, 187(4), 189. doi:10.1007/s10661-015-4381-1.

Elzwayie, A., El-shafie, A., Yaseen, Z. M., Afan, H. A., & Allawi, M. F. (2017). RBFNN-based model for heavy metal prediction for different climatic and pollution conditions. Neural Computing and Applications, 28(8), 1991–2003. doi:10.1007/s00521-015-2174-7.

Ghorbani, M. A., Khatibi, R., Karimi, V., Yaseen, Z. M., & Zounemat-Kermani, M. (2018). Learning from Multiple Models Using Artificial Intelligence to Improve Model Prediction Accuracies: Application to River Flows. Water Resources Management, 32(13), 4201–4215. doi:10.1007/s11269-018-2038-x.

Yaseen, Z. M., Sulaiman, S. O., Deo, R. C., & Chau, K. W. (2019). An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. Journal of Hydrology, 569, 387–408. doi:10.1016/j.jhydrol.2018.11.069.

Ismail, R., Alsadi, J., Hatamleh, R., Telfah, D., Jaradat, A., Aljamal, M., Trrad, I., & Al-Mattarneh, H. (2024). Employing CNN and black widow optimization for sustainable wastewater management in an environmental engineering context. Asian Journal of Civil Engineering, 25(5), 3973–3988. doi:10.1007/s42107-024-01024-w.

Al-Mattarneh, H., & Dahim, M. (2018). Determination of Water Quality Parameters Using Microwave Nondestructive Method. International Journal of Engineering & Technology, 7(3.32), 182-185.

Othman, F., Alaaeldin, M. E., Seyam, M., Ahmed, A. N., Teo, F. Y., Ming Fai, C., Afan, H. A., Sherif, M., Sefelnasr, A., & El-Shafie, A. (2020). Efficient river water quality index prediction considering minimal number of inputs variables. Engineering Applications of Computational Fluid Mechanics, 14(1), 751–763. doi:10.1080/19942060.2020.1760942.

Ismail, R., Aljamal, M., Al-Mattarneh, H., Das, A., & Pawar, R. K. (2023). Sustainable Infrastructure Development: Integrating Environmental and Social Factors in Civil Engineering”. Journal of Advanced Zoology, 44(S2), 4730–4737. doi:10.53555/jaz.v44iS2.2205.

Dahim, M., Al-Mattarneh, H., & Ismail, R. (2018). Simple capacitor dielectric sensors for determination of water content in transformer oil. International Journal of Engineering & Technology, 7(3), 157–160. www.sciencepubco.com/index.php/IJET

Ismail, R. (2024). Improving wastewater treatment plant performance: an ANN-based predictive model for managing average daily overflow and resource allocation optimization using Tabu search. Asian Journal of Civil Engineering, 25(2), 1427–1441. doi:10.1007/s42107-023-00853-5.

Kasmuri, N., Hadi, N. A., & Omar, M. (2017). Water Quality Assessment in Klang River Basin, Malaysia. Proceedings of the 37th IAHR World Congress, 6865, 270–273, 13–18 August, 2017, Kuala Lumpur, Malaysia.

Telfah, D. B., Jaradat, A. Q., & Ismail, R. (2024). Examining the Long-Run and Short-Run Relationship between Water Demand and Socio-Economic Explanatory Variables: Evidence from Amman. Sustainability (Switzerland), 16(6), 2315. doi:10.3390/su16062315.

Ismail, R. M. A., Enemose, E. A., Al-Jamal, M., Trrad, I., Al-Mattarneh, H., Tripathi, V., & Patil, P. Y. (2022). Study on Cu Based Organic Linkers for Effective Emission Control over Diesel Engine Effuluents. Key Engineering Materials, 928, 61–67. doi:10.4028/p-4nz3up.

Zain, M. F. M., Al-Mattarneh, H., Rama, S. N., & Mahmud, H. B. (2008). A Knowledge-based system for mix design of concrete containing pozzolanic materials. Proceedings of the AEI 2008 Conference - AEI 2008: Building Integration Solutions, 328. doi:10.1061/41002(328)57.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-07-012

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Hashem Al-Mattarneh, Rabah Ismail, Adnan Rawashdeh, Dua’a Telfah, Randa Hatamleh, Aiman Jaradat

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message