Enhancing the Flexural Capacity of Reinforced Concrete Beam by Using Modified Shear Reinforcement

Bonjoebee R. Bello, Orlean G. Dela Cruz, Manuel M. Muhi, Ernesto J. Guades

Abstract


Many researchers have studied how modifying conventional shear reinforcement into spiral and truss systems improves the behavior of RC beams. However, there is a scarcity of studies investigating the influence of spiral reinforcement, and limited research is available on the flexural capacity of beams utilizing truss reinforcement systems. Additionally, recent designs focused only on the rectangular spiral and rectangular truss systems, underscoring the necessity of incorporating a new design of modifications in the stirrup configurations. These gaps must be addressed to identify the most effective design for achieving the desired flexural capacities. As a result, the present study conducts a simulation and experimentation on RC beams utilizing modified stirrups through the Abaqus software to describe the load-deflection relationship, determine the flexural capacity and ductility, and analyze the failure mode and crack patterns. The present study simulated seventeen finite element models, including one control beam as BN and four various designs that used rectangular spiral (BR-S), rectangular truss system (BT-R), and a new modification, namely vertical X-shaped stirrups (BV-X), and X-shaped truss system (BT-X) with four spacings of 150mm, 125mm, 100mm, and 75mm. The findings reveal that the most effective enhancement in RC beam behavior was observed within the BT-R group, particularly with BT-R 100, which demonstrated a remarkable 6.551% increase in flexural capacity compared to BN. Moreover, stirrup spacing and inclination considerably impact the beam's performance, depending on the various modifications of stirrups in RC beams. Furthermore, uniform failure modes have been observed across all models and specimens, including BN, demonstrating that modified stirrups improve RC beam performance. The present study compared and verified the finite element simulation results through an actual experiment from BN and BT-R 150 models and specimens.

 

Doi: 10.28991/CEJ-2024-010-06-02

Full Text: PDF


Keywords


Modified Stirrups; Spiral; Truss Reinforcement; X-shaped stirrups; Finite Element Method.

References


Jin, L., Wang, T., Jiang, X. ang, & Du, X. (2019). Size effect in shear failure of RC beams with stirrups: Simulation and formulation. Engineering Structures, 199, 109573. doi:10.1016/j.engstruct.2019.109573.

Zapris, A. G., Kytinou, V. K., Gribniak, V., & Chalioris, C. E. (2024). Novel approach for strengthening T-beams deficient in shear with near-surface mounted CFRP ropes in form of closed stirrups. Developments in the Built Environment, 18, 100394. doi:10.1016/j.dibe.2024.100394.

Concha, N., Aratan, J. R., Derigay, E. M., Martin, J. M., & Taneo, R. E. (2023). A hybrid neuro-swarm model for shear strength of steel fiber reinforced concrete deep beams. Journal of Building Engineering, 76, 107340. doi:10.1016/j.jobe.2023.107340.

Mansour, W., & Tayeh, B. A. (2020). Shear Behaviour of RC Beams Strengthened by Various Ultrahigh Performance Fibre-Reinforced Concrete Systems. Advances in Civil Engineering, 2020, 1–18. doi:10.1155/2020/2139054.

Kotsovos, G. M. (2011). Assessment of the flexural capacity of RC beam/column elements allowing for 3d effects. Engineering Structures, 33(10), 2772–2780. doi:10.1016/j.engstruct.2011.06.002.

Bello, B. R., & Dela Cruz, O.G. (2024). Shear and Flexural Performance of Reinforced Concrete Beams with Modified Shear Reinforcement: A Literature Review. Proceedings of the International Conference on Geosynthetics and Environmental Engineering. ICGEE 2023, Lecture Notes in Civil Engineering, 374. Springer, Singapore. doi:10.1007/978-981-99-4229-9_9.

Colajanni, P., La Mendola, L., Mancini, G., Recupero, A., & Spinella, N. (2014). Shear capacity in concrete beams reinforced by stirrups with two different inclinations. Engineering Structures, 81(1), 444–453. doi:10.1016/j.engstruct.2014.10.011.

Herring, T. C., Nyomboi, T., & Thuo, J. N. (2022). Ductility and cracking behavior of reinforced coconut shell concrete beams incorporated with coconut shell ash. Results in Engineering, 14, 100401. doi:10.1016/j.rineng.2022.100401.

Ibrahim, A. A., AL-Shareef, N. H., Jaber, M. H., Hassan, R. F., Hussein, H. H., & Al-Salim, N. H. (2022). Experimental investigation of flexural and shear behaviors of reinforced concrete beam containing fine plastic waste aggregates. Structures, 43, 834–846. doi:10.1016/j.istruc.2022.07.019.

Yıldızel, S. A., Özkılıç, Y. O., Bahrami, A., Aksoylu, C., Başaran, B., Hakamy, A., & Arslan, M. H. (2023). Experimental investigation and analytical prediction of flexural behaviour of reinforced concrete beams with steel fibres extracted from waste tyres. Case Studies in Construction Materials, 19, 2227. doi:10.1016/j.cscm.2023.e02227.

Mejía, N., Sarango, A., & Espinosa, A. (2024). Flexural and shear strengthening of RC beams reinforced with externally bonded CFRP laminates postfire exposure by experimental and analytical investigations. Engineering Structures, 308, 117995. doi:10.1016/j.engstruct.2024.117995.

Daniel, C., Onchiri, R. O., & Omondi, B. O. (2024). Structural behaviour of reinforced concrete beams containing recycled polyethylene terephthalate and sugarcane bagasse ash. Applications in Engineering Science, 18, 100178. doi:10.1016/j.apples.2024.100178.

Manggapis, F. F., & Dela Cruz, O. G. (2024). An In-Depth Review on the Eccentric Compression Performance of Engineered Bamboo Columns. Civil Engineering Journal (Iran), 10(3), 974–993. doi:10.28991/CEJ-2024-010-03-020.

Apeh, J., & Okoli, G. (2016). Evaluation of ductility index of concrete beams reinforced with rebars milled from scrap metals. Concrete Research Letters, 7(2), 56 - 68.

Saraswat, A., Kumar Parashar, A., & Bahadur, R. (2023). Effect of coconut shell ash substitute with cement on the mechanical properties of cement concrete. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.11.014.

Das, P., Chakraborty, S., & Barai, S. V. (2023). Flexural behaviour of fly ash incorporated ferrochrome slag aggregate reinforced concrete beam. Journal of Building Engineering, 76, 107317. doi:10.1016/j.jobe.2023.107317.

Bheel, N., Kumar, S., Kirgiz, M. S., Ali, M., Almujibah, H. R., Ahmad, M., & Gonzalez-Lezcano, R. A. (2024). Effect of wheat straw ash as cementitious material on the mechanical characteristics and embodied carbon of concrete reinforced with coir fiber. Heliyon, 10(2), 24313. doi:10.1016/j.heliyon.2024.e24313.

Yuan, F., Wang, Y., Li, P. Da, & Li, H. (2023). Shear behaviour of seawater sea-sand coral aggregate concrete beams reinforced with FRP strip stirrups. Engineering Structures, 290, 116332. doi:10.1016/j.engstruct.2023.116332.

Yu, F., Wang, M., Yao, D., & Liu, Y. (2023). Experimental research on flexural behavior of post-tensioned self-compacting concrete beams with recycled coarse aggregate. Construction and Building Materials, 377, 131098. doi:10.1016/j.conbuildmat.2023.131098.

Gao, D., Luo, F., Yan, Y., Tang, J., & Yang, L. (2023). Experimental investigation on the flexural performance and damage process of steel fiber reinforced recycled coarse aggregate concrete. Structures, 51, 1205–1218. doi:10.1016/j.istruc.2023.03.122.

Elsayed, M., Abd-Allah, S. R., Said, M., & El-Azim, A. A. (2023). Structural performance of recycled coarse aggregate concrete beams containing waste glass powder and waste aluminum fibers. Case Studies in Construction Materials, 18, e01751. doi:10.1016/j.cscm.2022.e01751.

Zhang, Y., Xiong, X., Liang, Y., & He, M. (2023). Study on flexural behavior of concrete beams reinforced with hybrid high-strength and high-toughness (HSHT) and ordinary steel bars. Engineering Structures, 285, 115978. doi:10.1016/j.engstruct.2023.115978.

Guo, Y. Q., & Wang, J. Y. (2023). Flexural behavior of high-strength steel bar reinforced UHPC beams with considering restrained shrinkage. Construction and Building Materials, 409, 133802. doi:10.1016/j.conbuildmat.2023.133802.

Zhao, J., Jiang, Y., & Li, X. (2023). Flexural behavior of concrete beams reinforced with high-strength steel bars after exposure to elevated temperatures. Construction and Building Materials, 382, 131317. doi:10.1016/j.conbuildmat.2023.131317.

Hao, N., Yang, Y., Xue, Y., Feng, S., Yu, Y., Wang, C., & Li, Y. (2023). Experimental study on flexural behavior of partially precast high-strength steel reinforced ultra-high performance concrete beam. Engineering Structures, 284, 115999. doi:10.1016/j.engstruct.2023.115999.

Liu, Z., Zhu, H., Zeng, Y., Dong, Z., Ji, J., Wu, G., & Zhao, X. (2024). Study on the flexural properties of T-shaped concrete beams reinforced with iron-based shape memory alloy rebar. Engineering Structures, 306, 117792. doi:10.1016/j.engstruct.2024.117792.

Jin, L., Yu, W., Su, X., Zhang, S., Du, X., Han, J., & Li, D. (2018). Effect of cross-section size on the flexural failure behavior of RC cantilever beams under low cyclic and monotonic lateral loadings. Engineering Structures, 156, 567–586. doi:10.1016/j.engstruct.2017.11.069.

Li, Y., Wu, M., Wang, W., & Xue, X. (2021). Shear Behavior of RC Beams Strengthened by External Vertical Prestressing Rebar. Advances in Civil Engineering, 2021, 1–12. doi:10.1155/2021/5483436.

Yoo, D. Y., & Yang, J. M. (2018). Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams. Cement and Concrete Composites, 87, 137–148. doi:10.1016/j.cemconcomp.2017.12.010.

Biolzi, L., & Cattaneo, S. (2017). Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions. Cement and Concrete Composites, 77, 1–13. doi:10.1016/j.cemconcomp.2016.12.002.

M, K. B. (2014). Shear Strength Capacity of Normal and High Strength Concrete Beams Bonded by CFRP Wraps. International Journal of Engineering and Advanced Technology (IJEAT), 4(1), 2249–8958.

Fritih, Y., Vidal, T., Turatsinze, A., & Pons, G. (2013). Flexural and shear behavior of steel fiber reinforced SCC beams. KSCE Journal of Civil Engineering, 17(6), 1383–1393. doi:10.1007/s12205-013-1115-1.

Abd-Alla, S. M., Ibrahim, W. W., Hashem, M. M., & Eisa, A. S. (2007). Shear strength of normal, medium and high strength reinforced concrete beams. Alexandria Engineering Journal, 46(2), 151-177.

Kim, S. W. (2021). Prediction of shear strength of reinforced high-strength concrete beams using compatibility-aided truss model. Applied Sciences (Switzerland), 11(22), 10585. doi:10.3390/app112210585.

Xue, X., Chen, X., Zhao, P., & Yang, C. (2023). Shear performance of reinforced concrete beams containing stirrups with lower bend defects. Engineering Structures, 280, 115718. doi:10.1016/j.engstruct.2023.115718.

Abdullah, M., Nakamura, H., Kawamura, K., Takemura, M., & Miura, T. (2023). Experimental study on the effect of different shear reinforcement shapes and arrangement on 3D crack propagation and shear failure mechanism in RC beams. Structures, 58, 105453. doi:10.1016/j.istruc.2023.105453.

Abdullah, M., Nakamura, H., & Miura, T. (2024). Experimental investigation on influence of vertical stirrup legs to shear failure behavior in RC beams. Developments in the Built Environment, 18, 100451. doi:10.1016/j.dibe.2024.100451.

El Bakzawy, A., Makhlouf, M. H., Mustafa, T. S., & Adam, M. (2024). Experimental investigation on the flexural behavior of SFRC beams reinforced with hybrid reinforcement schemes. Engineering Structures, 309, 118054. doi:10.1016/j.engstruct.2024.118054.

Djamaluddin, R., Frans, P. L., & Irmawati, R. (2017). Flexural Capacity of the Concrete Beams Reinforced by Steel Truss System. MATEC Web of Conferences, 138, 02003. doi:10.1051/matecconf/201713802003.

Karunanidhi. S. (2019). Investigation on Spiral Stirrups in Reinforced Concrete Beams. International Journal of Novel Research in Civil Structural and Earth Sciences, 6(3). 14–28.

Shatarat, N., Mahmoud, H. M., & Katkhuda, H. (2018). Shear capacity investigation of self-compacting concrete beams with rectangular spiral reinforcement. Construction and Building Materials, 189, 640–648. doi:10.1016/j.conbuildmat.2018.09.046.

Joshy, V., & Faisal, K. M. (2017). Experimental study on the behaviour of spirally reinforced SCC beams. International Journal of Engineering Research and General Science, 5(3), 96-105.

De Corte, W., & Boel, V. (2013). Effectiveness of spirally shaped stirrups in reinforced concrete beams. Engineering Structures, 52, 667–675. doi:10.1016/j.engstruct.2013.03.032.

Karayannis, C. G., & Chalioris, C. E. (2013). Shear tests of reinforced concrete beams with continuous rectangular spiral reinforcement. Construction and Building Materials, 46, 86–97. doi:10.1016/j.conbuildmat.2013.04.023.

AL-Rakhameen, A., Murad, Y., Jaber, M. T. A., & Shatarat, N. (2022). Torsional behavior of spirally reinforced concrete beams. Innovative Infrastructure Solutions, 7(6), 334. doi:10.1007/s41062-022-00927-4.

Chiriki, S. S., & Sri Harsha, G. (2020). Finite element analysis of RC deep beams strengthened with I-section and truss reinforcement. Materials Today: Proceedings, 33, 156–161. doi:10.1016/j.matpr.2020.03.579.

Hamkah, Frans, P. L., & Saing, Z. (2021). Improving Flexural Moment Capacity of Concrete Beam by Changing the Reinforcement Configuration. International Journal of GEOMATE, 20(79), 161–167. doi:10.21660/2021.79.j2042.

Djamaluddin, R., Bachtiar, Y., Irmawati, R., Akkas, A. M., & Latief, R. U. (2014). Effect of the truss system to the flexural behavior of the external reinforced concrete beams. International Journal of Civil, Architectural, Structural and Construction Engineering, 8(6), 938-942.

Arafa, M., Alqedra, M. A., & Salim, R. (2018). Performance of RC Beams with Embedded Steel Trusses Using Nonlinear FEM Analysis. Advances in Civil Engineering, 2018, 1–8. doi:10.1155/2018/9079818.

Etman, E. E., Afefy, H. M., Baraghith, A. T., & Abuelwafa, M. (2021). Shear behavior of RC beams reinforced with internal trussed steel strips at shear span zone. Structures, 32, 1734–1751. doi:10.1016/j.istruc.2021.03.093.

Mahieux, C. A. (2006). Environmental Impact on Micromechanical and Macromechanical Calculations. Environmental Degradation of Industrial Composites, 175–232, Elsevier Science, Amsterdam, Netherlands. doi:10.1016/b978-185617447-3/50030-x.

Khan, Y. (2019). Characterizing the Properties of Tissue Constructs for Regenerative Engineering. Encyclopedia of Biomedical Engineering, 537–545, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-801238-3.99897-0.

Jamovi. (2024). Open statistical software for the desktop and cloud: The Jamovi Project. Available online: https://www.jamovi.org/ (accessed on May 2024).

R Project (2024). The Comprehensive R Archive Network. Available online: https://cran.r-project.org/ (accessed on May 2024).


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-06-02

Refbacks





Copyright (c) 2024 Bonjoebee Remojo Bello, Orlean G. Dela Cruz, Ernesto J. Guades

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message