Enhancing the Flexural Capacity of Reinforced Concrete Beam by Using Modified Shear Reinforcement
Abstract
Doi: 10.28991/CEJ-2024-010-06-02
Full Text: PDF
Keywords
References
Jin, L., Wang, T., Jiang, X. ang, & Du, X. (2019). Size effect in shear failure of RC beams with stirrups: Simulation and formulation. Engineering Structures, 199, 109573. doi:10.1016/j.engstruct.2019.109573.
Zapris, A. G., Kytinou, V. K., Gribniak, V., & Chalioris, C. E. (2024). Novel approach for strengthening T-beams deficient in shear with near-surface mounted CFRP ropes in form of closed stirrups. Developments in the Built Environment, 18, 100394. doi:10.1016/j.dibe.2024.100394.
Concha, N., Aratan, J. R., Derigay, E. M., Martin, J. M., & Taneo, R. E. (2023). A hybrid neuro-swarm model for shear strength of steel fiber reinforced concrete deep beams. Journal of Building Engineering, 76, 107340. doi:10.1016/j.jobe.2023.107340.
Mansour, W., & Tayeh, B. A. (2020). Shear Behaviour of RC Beams Strengthened by Various Ultrahigh Performance Fibre-Reinforced Concrete Systems. Advances in Civil Engineering, 2020, 1–18. doi:10.1155/2020/2139054.
Kotsovos, G. M. (2011). Assessment of the flexural capacity of RC beam/column elements allowing for 3d effects. Engineering Structures, 33(10), 2772–2780. doi:10.1016/j.engstruct.2011.06.002.
Bello, B. R., & Dela Cruz, O.G. (2024). Shear and Flexural Performance of Reinforced Concrete Beams with Modified Shear Reinforcement: A Literature Review. Proceedings of the International Conference on Geosynthetics and Environmental Engineering. ICGEE 2023, Lecture Notes in Civil Engineering, 374. Springer, Singapore. doi:10.1007/978-981-99-4229-9_9.
Colajanni, P., La Mendola, L., Mancini, G., Recupero, A., & Spinella, N. (2014). Shear capacity in concrete beams reinforced by stirrups with two different inclinations. Engineering Structures, 81(1), 444–453. doi:10.1016/j.engstruct.2014.10.011.
Herring, T. C., Nyomboi, T., & Thuo, J. N. (2022). Ductility and cracking behavior of reinforced coconut shell concrete beams incorporated with coconut shell ash. Results in Engineering, 14, 100401. doi:10.1016/j.rineng.2022.100401.
Ibrahim, A. A., AL-Shareef, N. H., Jaber, M. H., Hassan, R. F., Hussein, H. H., & Al-Salim, N. H. (2022). Experimental investigation of flexural and shear behaviors of reinforced concrete beam containing fine plastic waste aggregates. Structures, 43, 834–846. doi:10.1016/j.istruc.2022.07.019.
Yıldızel, S. A., Özkılıç, Y. O., Bahrami, A., Aksoylu, C., Başaran, B., Hakamy, A., & Arslan, M. H. (2023). Experimental investigation and analytical prediction of flexural behaviour of reinforced concrete beams with steel fibres extracted from waste tyres. Case Studies in Construction Materials, 19, 2227. doi:10.1016/j.cscm.2023.e02227.
Mejía, N., Sarango, A., & Espinosa, A. (2024). Flexural and shear strengthening of RC beams reinforced with externally bonded CFRP laminates postfire exposure by experimental and analytical investigations. Engineering Structures, 308, 117995. doi:10.1016/j.engstruct.2024.117995.
Daniel, C., Onchiri, R. O., & Omondi, B. O. (2024). Structural behaviour of reinforced concrete beams containing recycled polyethylene terephthalate and sugarcane bagasse ash. Applications in Engineering Science, 18, 100178. doi:10.1016/j.apples.2024.100178.
Manggapis, F. F., & Dela Cruz, O. G. (2024). An In-Depth Review on the Eccentric Compression Performance of Engineered Bamboo Columns. Civil Engineering Journal (Iran), 10(3), 974–993. doi:10.28991/CEJ-2024-010-03-020.
Apeh, J., & Okoli, G. (2016). Evaluation of ductility index of concrete beams reinforced with rebars milled from scrap metals. Concrete Research Letters, 7(2), 56 - 68.
Saraswat, A., Kumar Parashar, A., & Bahadur, R. (2023). Effect of coconut shell ash substitute with cement on the mechanical properties of cement concrete. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.11.014.
Das, P., Chakraborty, S., & Barai, S. V. (2023). Flexural behaviour of fly ash incorporated ferrochrome slag aggregate reinforced concrete beam. Journal of Building Engineering, 76, 107317. doi:10.1016/j.jobe.2023.107317.
Bheel, N., Kumar, S., Kirgiz, M. S., Ali, M., Almujibah, H. R., Ahmad, M., & Gonzalez-Lezcano, R. A. (2024). Effect of wheat straw ash as cementitious material on the mechanical characteristics and embodied carbon of concrete reinforced with coir fiber. Heliyon, 10(2), 24313. doi:10.1016/j.heliyon.2024.e24313.
Yuan, F., Wang, Y., Li, P. Da, & Li, H. (2023). Shear behaviour of seawater sea-sand coral aggregate concrete beams reinforced with FRP strip stirrups. Engineering Structures, 290, 116332. doi:10.1016/j.engstruct.2023.116332.
Yu, F., Wang, M., Yao, D., & Liu, Y. (2023). Experimental research on flexural behavior of post-tensioned self-compacting concrete beams with recycled coarse aggregate. Construction and Building Materials, 377, 131098. doi:10.1016/j.conbuildmat.2023.131098.
Gao, D., Luo, F., Yan, Y., Tang, J., & Yang, L. (2023). Experimental investigation on the flexural performance and damage process of steel fiber reinforced recycled coarse aggregate concrete. Structures, 51, 1205–1218. doi:10.1016/j.istruc.2023.03.122.
Elsayed, M., Abd-Allah, S. R., Said, M., & El-Azim, A. A. (2023). Structural performance of recycled coarse aggregate concrete beams containing waste glass powder and waste aluminum fibers. Case Studies in Construction Materials, 18, e01751. doi:10.1016/j.cscm.2022.e01751.
Zhang, Y., Xiong, X., Liang, Y., & He, M. (2023). Study on flexural behavior of concrete beams reinforced with hybrid high-strength and high-toughness (HSHT) and ordinary steel bars. Engineering Structures, 285, 115978. doi:10.1016/j.engstruct.2023.115978.
Guo, Y. Q., & Wang, J. Y. (2023). Flexural behavior of high-strength steel bar reinforced UHPC beams with considering restrained shrinkage. Construction and Building Materials, 409, 133802. doi:10.1016/j.conbuildmat.2023.133802.
Zhao, J., Jiang, Y., & Li, X. (2023). Flexural behavior of concrete beams reinforced with high-strength steel bars after exposure to elevated temperatures. Construction and Building Materials, 382, 131317. doi:10.1016/j.conbuildmat.2023.131317.
Hao, N., Yang, Y., Xue, Y., Feng, S., Yu, Y., Wang, C., & Li, Y. (2023). Experimental study on flexural behavior of partially precast high-strength steel reinforced ultra-high performance concrete beam. Engineering Structures, 284, 115999. doi:10.1016/j.engstruct.2023.115999.
Liu, Z., Zhu, H., Zeng, Y., Dong, Z., Ji, J., Wu, G., & Zhao, X. (2024). Study on the flexural properties of T-shaped concrete beams reinforced with iron-based shape memory alloy rebar. Engineering Structures, 306, 117792. doi:10.1016/j.engstruct.2024.117792.
Jin, L., Yu, W., Su, X., Zhang, S., Du, X., Han, J., & Li, D. (2018). Effect of cross-section size on the flexural failure behavior of RC cantilever beams under low cyclic and monotonic lateral loadings. Engineering Structures, 156, 567–586. doi:10.1016/j.engstruct.2017.11.069.
Li, Y., Wu, M., Wang, W., & Xue, X. (2021). Shear Behavior of RC Beams Strengthened by External Vertical Prestressing Rebar. Advances in Civil Engineering, 2021, 1–12. doi:10.1155/2021/5483436.
Yoo, D. Y., & Yang, J. M. (2018). Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams. Cement and Concrete Composites, 87, 137–148. doi:10.1016/j.cemconcomp.2017.12.010.
Biolzi, L., & Cattaneo, S. (2017). Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions. Cement and Concrete Composites, 77, 1–13. doi:10.1016/j.cemconcomp.2016.12.002.
M, K. B. (2014). Shear Strength Capacity of Normal and High Strength Concrete Beams Bonded by CFRP Wraps. International Journal of Engineering and Advanced Technology (IJEAT), 4(1), 2249–8958.
Fritih, Y., Vidal, T., Turatsinze, A., & Pons, G. (2013). Flexural and shear behavior of steel fiber reinforced SCC beams. KSCE Journal of Civil Engineering, 17(6), 1383–1393. doi:10.1007/s12205-013-1115-1.
Abd-Alla, S. M., Ibrahim, W. W., Hashem, M. M., & Eisa, A. S. (2007). Shear strength of normal, medium and high strength reinforced concrete beams. Alexandria Engineering Journal, 46(2), 151-177.
Kim, S. W. (2021). Prediction of shear strength of reinforced high-strength concrete beams using compatibility-aided truss model. Applied Sciences (Switzerland), 11(22), 10585. doi:10.3390/app112210585.
Xue, X., Chen, X., Zhao, P., & Yang, C. (2023). Shear performance of reinforced concrete beams containing stirrups with lower bend defects. Engineering Structures, 280, 115718. doi:10.1016/j.engstruct.2023.115718.
Abdullah, M., Nakamura, H., Kawamura, K., Takemura, M., & Miura, T. (2023). Experimental study on the effect of different shear reinforcement shapes and arrangement on 3D crack propagation and shear failure mechanism in RC beams. Structures, 58, 105453. doi:10.1016/j.istruc.2023.105453.
Abdullah, M., Nakamura, H., & Miura, T. (2024). Experimental investigation on influence of vertical stirrup legs to shear failure behavior in RC beams. Developments in the Built Environment, 18, 100451. doi:10.1016/j.dibe.2024.100451.
El Bakzawy, A., Makhlouf, M. H., Mustafa, T. S., & Adam, M. (2024). Experimental investigation on the flexural behavior of SFRC beams reinforced with hybrid reinforcement schemes. Engineering Structures, 309, 118054. doi:10.1016/j.engstruct.2024.118054.
Djamaluddin, R., Frans, P. L., & Irmawati, R. (2017). Flexural Capacity of the Concrete Beams Reinforced by Steel Truss System. MATEC Web of Conferences, 138, 02003. doi:10.1051/matecconf/201713802003.
Karunanidhi. S. (2019). Investigation on Spiral Stirrups in Reinforced Concrete Beams. International Journal of Novel Research in Civil Structural and Earth Sciences, 6(3). 14–28.
Shatarat, N., Mahmoud, H. M., & Katkhuda, H. (2018). Shear capacity investigation of self-compacting concrete beams with rectangular spiral reinforcement. Construction and Building Materials, 189, 640–648. doi:10.1016/j.conbuildmat.2018.09.046.
Joshy, V., & Faisal, K. M. (2017). Experimental study on the behaviour of spirally reinforced SCC beams. International Journal of Engineering Research and General Science, 5(3), 96-105.
De Corte, W., & Boel, V. (2013). Effectiveness of spirally shaped stirrups in reinforced concrete beams. Engineering Structures, 52, 667–675. doi:10.1016/j.engstruct.2013.03.032.
Karayannis, C. G., & Chalioris, C. E. (2013). Shear tests of reinforced concrete beams with continuous rectangular spiral reinforcement. Construction and Building Materials, 46, 86–97. doi:10.1016/j.conbuildmat.2013.04.023.
AL-Rakhameen, A., Murad, Y., Jaber, M. T. A., & Shatarat, N. (2022). Torsional behavior of spirally reinforced concrete beams. Innovative Infrastructure Solutions, 7(6), 334. doi:10.1007/s41062-022-00927-4.
Chiriki, S. S., & Sri Harsha, G. (2020). Finite element analysis of RC deep beams strengthened with I-section and truss reinforcement. Materials Today: Proceedings, 33, 156–161. doi:10.1016/j.matpr.2020.03.579.
Hamkah, Frans, P. L., & Saing, Z. (2021). Improving Flexural Moment Capacity of Concrete Beam by Changing the Reinforcement Configuration. International Journal of GEOMATE, 20(79), 161–167. doi:10.21660/2021.79.j2042.
Djamaluddin, R., Bachtiar, Y., Irmawati, R., Akkas, A. M., & Latief, R. U. (2014). Effect of the truss system to the flexural behavior of the external reinforced concrete beams. International Journal of Civil, Architectural, Structural and Construction Engineering, 8(6), 938-942.
Arafa, M., Alqedra, M. A., & Salim, R. (2018). Performance of RC Beams with Embedded Steel Trusses Using Nonlinear FEM Analysis. Advances in Civil Engineering, 2018, 1–8. doi:10.1155/2018/9079818.
Etman, E. E., Afefy, H. M., Baraghith, A. T., & Abuelwafa, M. (2021). Shear behavior of RC beams reinforced with internal trussed steel strips at shear span zone. Structures, 32, 1734–1751. doi:10.1016/j.istruc.2021.03.093.
Mahieux, C. A. (2006). Environmental Impact on Micromechanical and Macromechanical Calculations. Environmental Degradation of Industrial Composites, 175–232, Elsevier Science, Amsterdam, Netherlands. doi:10.1016/b978-185617447-3/50030-x.
Khan, Y. (2019). Characterizing the Properties of Tissue Constructs for Regenerative Engineering. Encyclopedia of Biomedical Engineering, 537–545, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-12-801238-3.99897-0.
Jamovi. (2024). Open statistical software for the desktop and cloud: The Jamovi Project. Available online: https://www.jamovi.org/ (accessed on May 2024).
R Project (2024). The Comprehensive R Archive Network. Available online: https://cran.r-project.org/ (accessed on May 2024).
DOI: 10.28991/CEJ-2024-010-06-02
Refbacks
Copyright (c) 2024 Bonjoebee Remojo Bello, Orlean G. Dela Cruz, Ernesto J. Guades
This work is licensed under a Creative Commons Attribution 4.0 International License.