Effective Stiffness and Damping Analysis of Steel Damper to Lateral Cyclic Loading

Bastian A. Ampangallo, Herman Parung, Rita Irmawaty, Arwin Amiruddin

Abstract


Steel dampers are components used in building structures to reduce vibration and energy generated by dynamic loads such as earthquakes. Several factors affect the effectiveness of steel dampers in reducing energy, including the cross-sectional area, mass distribution, cross-sectional geometry, and material stiffness. The cross-sectional geometry or shape of the steel damper can affect how energy is absorbed and dissipated in the structural system. Cross sections with different geometric variations can have different mechanical responses to dynamic loads. This study aims to analyze which type of steel damper is effective in terms of stiffness and damping capacity against lateral cyclic loads. The steel damper cross-sectional variations used are slit steel dampers (SSDs), tapered steel dampers (TSDs), and oval steel dampers (OSDs). Cyclic testing of the dampers used displacement control with the same target deviation for all three damper types. The results showed that the stress and strain distributions of the oval steel damper were more even than those of the other two models. The variations in the energy dissipation capacities of the three cross-section variations are relatively the same. However, the slit steel damper type has the best stiffness compared to the other two types. This research is ultimately expected to influence the science of the structure of a building in preventing and anticipating earthquakes or other disasters.

 

Doi: 10.28991/CEJ-2024-010-07-017

Full Text: PDF


Keywords


Energy Dissipation; Lateral Cyclic Loading; Steel Damper; Strain Distribution.

References


Mavrouli, M., Mavroulis, S., Lekkas, E., & Tsakris, A. (2023). The Impact of Earthquakes on Public Health: A Narrative Review of Infectious Diseases in the Post-Disaster Period Aiming to Disaster Risk Reduction. Microorganisms, 11(2), 419. doi:10.3390/microorganisms11020419.

Wang, Z., & Wang, F. (2022). Well-being Effects of Natural Disasters: Evidence from China’s Wenchuan Earthquake. Journal of Happiness Studies, 24(2), 563–587. doi:10.1007/s10902-022-00609-z.

Mavroulis, S., Ilgac, M., Tunçağ, M., Lekkas, E., Püskülcü, S., Kourou, A., Sextos, A., Mavrouli, M., Can, G., Thoma, T., Manousaki, M., & Karveleas, N. (2022). Emergency response, intervention, and societal recovery in Greece and Turkey after the 30th October 2020, MW = 7.0, Samos (Aegean Sea) earthquake. Bulletin of Earthquake Engineering, 20(14), 7933–7955. doi:10.1007/s10518-022-01317-y.

De Gois Silva, M. D., & Chavarette, F. R. (2024). H-hybrid control and MRD in a steel frame building subjected to excessive vibrations caused by the dynamic action of wind and earthquake. Journal of AppliedMath, 2(2), 451. doi:10.59400/jam.v2i2.451.

Zhang, F., Xu, Z., Yang, Y., Qi, M., & Zhang, H. (2021). Virtual reality-based evaluation of indoor earthquake safety actions for occupants. Advanced Engineering Informatics, 49, 101351. doi:10.1016/j.aei.2021.101351.

McBride, S. K., Smith, H., Morgoch, M., Sumy, D., Jenkins, M., Peek, L., Bostrom, A., Baldwin, D., Reddy, E., De Groot, R., Becker, J., Johnston, D., & Wood, M. (2022). Evidence-based guidelines for protective actions and earthquake early warning systems. Geophysics, 87(1), WA77–WA102. doi:10.1190/geo2021-0222.1.

Hejazi, F., Farahpour, H., & Ayyash, N. (2024). Seismic performance of structure equipped with a new rubber bracing damper system. Archives of Civil and Mechanical Engineering, 24(1). doi:10.1007/s43452-023-00845-x.

Leblouba, M., Fageeri, A., & Al-Sadoon, Z. A. (2022). A novel seismic energy dissipation device: Laboratory tests, mathematical modeling, and numerical analysis. Soil Dynamics and Earthquake Engineering, 162. doi:10.1016/j.soildyn.2022.107493.

Yan, L., Li, Y., Chang, W. S., & Huang, H. (2023). Seismic control of cross laminated timber (CLT) structure with shape memory alloy-based semi-active tuned mass damper (SMA-STMD). Structures, 57. doi:10.1016/j.istruc.2023.105093.

Almajhali, K. Y. M. (2023). Review on passive energy dissipation devices and techniques of installation for high rise building structures. Structures, 51, 1019–1029. doi:10.1016/j.istruc.2023.03.025.

Gkournelos, P. D., Triantafillou, T. C., & Bournas, D. A. (2021). Seismic upgrading of existing reinforced concrete buildings: A state-of-the-art review. Engineering Structures, 240. doi:10.1016/j.engstruct.2021.112273.

Oliaei, M., Mashhadiyan, M., & Forootan, R. (2023). Seismic Performance Evaluation of Friction Damper and Yielding Metallic Damper in Steel Frame. Journal of Civil Engineering Researchers, 5(3), 1–14. doi:10.61186/jcer.5.3.1.

Aljawadi, A. S., Alih, S. C., & Vafaei, M. (2021). Mechanical behaviour of metallic yielding dampers with different aspect ratios. Latin American Journal of Solids and Structures, 18(2), 1–10. doi:10.1590/1679-78256350.

Kim, Y. C., Lee, H. W., & Hu, J. W. (2023). Experimental performance evaluation of elastic friction damper. Case Studies in Construction Materials, 18, e01823. doi:10.1016/j.cscm.2023.e01823.

Prasad, B. B., Duvigneau, F., Juhre, D., & Woschke, E. (2022). Damping performance of particle dampers with different granular materials and their mixtures. Applied Acoustics, 200. doi:10.1016/j.apacoust.2022.109059.

Gorji Azandariani, M., Rousta, A. M., Usefvand, E., Abdolmaleki, H., & Gorji Azandariani, A. (2021). Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings. Structures, 29, 534–548. doi:10.1016/j.istruc.2020.11.041.

Zhang, R., Xie, J. Y., Chouery, K. E., Liu, J., Jia, L. J., Xiang, P., Zhao, X., Macrae, G. A., Clifton, G. C., Dhakal, R. P., Ramhormozian, S., & Yan, Z. (2022). Strong axis low-damage performance of rocking column-base joints with asymmetric friction connections. Journal of Constructional Steel Research, 191. doi:10.1016/j.jcsr.2022.107175.

Oh, S. H., & Park, H. Y. (2022). Experimental study on seismic performance of steel slit damper under additional tensile load. Journal of Building Engineering, 50. doi:10.1016/j.jobe.2022.104110.

Parveez, B., Jamal, N. A., Anuar, H., Ahmad, Y., Aabid, A., & Baig, M. (2022). Microstructure and Mechanical Properties of Metal Foams Fabricated via Melt Foaming and Powder Metallurgy Technique: A Review. Materials, 15(15), 5302. doi:10.3390/ma15155302.

Hwang, B. K., Kim, T. S., Kim, Y. J., & Kim, J. W. (2022). A comparative study on hysteretic characteristics of austenitic stainless steel and carbon steel slit dampers under cyclic loading. Journal of Building Engineering, 45. doi:10.1016/j.jobe.2021.103553.

Feng, S., Tagawa, H., & Chen, X. (2023). Seesaw-twisting system with cylindrical steel slit damper for vibration control of structures. Structures, 50, 1376–1390. doi:10.1016/j.istruc.2023.02.077.

Bae, J., Lee, C. H., Park, M., Alemayehu, R. W., Ryu, J., Kim, Y., & Ju, Y. K. (2020). Cyclic loading performance of radius-cut double coke-shaped strip dampers. Materials, 13(18), 3920. doi:10.3390/MA13183920.

Kim, S. W., & Kim, K. H. (2020). Evaluation of structural behavior of hysteretic steel dampers under cyclic loading. Applied Sciences (Switzerland), 10(22), 1–11. doi:10.3390/app10228264.

Liu, L., Xu, Y., Zhou, F., Hu, G., Yu, L., & He, C. (2022). Multiobjective Optimization Design for a MR Damper Based on EBFNN and MOPSO. Applied Sciences (Switzerland), 12(17), 8584. doi:10.3390/app12178584.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-07-017

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Bastian Artanto Ampangallo, Herman Parung, Rita Irmawaty, Arwin Amiruddin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message