Optimizing Gene Expression Programming to Predict Shear Capacity in Corrugated Web Steel Beams

Mazen Shrif, Zaid A. Al-Sadoon, Samer Barakat, Ahed Habib, Omar Mostafa

Abstract


Corrugated web steel systems, such as corrugated web girders (CWG) and beams (CWSB), have the potential to influence the modern construction industry due to their unique properties, including enhanced shear strength and reduced necessity for transverse stiffeners. Nevertheless, the lack of a rapid and accurate design approach still limits its wide applications. Recently, gene expression programming (GEP) has been employed to predict the shear capacity of cold-formed steel channels, demonstrating superior predictive accuracy and compliance with established standards. This study applies GEP to predict the shear capacity of sinusoidal CWSBs and optimizes its predictive performance by employing a systematic grid search to explore combinations of chromosomes, head sizes, gene counts, and linking functions. The process involved testing 19 different parameter combinations and more than 60 developed models. The findings include the sensitivity of the model's performance to gene count and the critical role of the linking function. The optimal model in the study, GEP13, achieved R² of 0.95, an RMSE of 100.5, and an MAE of 86.6 in the testing dataset with 150 chromosomes, a head size of 12, and four genes using a multiplication linking function.

 

Doi: 10.28991/CEJ-2024-010-05-02

Full Text: PDF


Keywords


Sinusoidal Steel Beam; SCWBS; ANN; Shear Strength Analysis; Network Topology; Predictive Modelling; Hyperparameter Optimization; Geometric Properties.

References


Ou, X., Liao, L., Lyu, X., & Qiao, Y. (2023). Numerical analysis and parameter optimization of corrugated steel web. Advances in Frontier Research on Engineering Structures, CRC Press, Boca Raton, United States. doi:10.1201/9781003363217-57.

Tetougueni, C. D., Maiorana, E., Zampieri, P., & Pellegrino, C. (2019). Plate girders behavior under in-plane loading: A review. Engineering Failure Analysis, 95, 332–358. doi:10.1016/j.engfailanal.2018.09.021.

Leblouba, M., Karzad, A. S., Tabsh, S. W., & Barakat, S. (2022). Plated versus Corrugated Web Steel Girders in Shear: Behavior, Parametric Analysis, and Reliability-Based Design Optimization. Buildings, 12(12). doi:10.3390/buildings12122046.

Hassanein, M. F., Zhang, Y. M., Elkawas, A. A., Al-Emrani, M., & Shao, Y. B. (2022). Small-scale laterally-unrestrained corrugated web girders: (II) Parametric studies and LTB design. Thin-Walled Structures, 180. doi:10.1016/j.tws.2022.109776.

Papangelis, J., Trahair, N., & Hancock, G. (2017). Direct strength method for shear capacity of beams with corrugated webs. Journal of Constructional Steel Research, 137, 152–160. doi:10.1016/j.jcsr.2017.06.007.

Giglioni, V., Venanzi, I., & Ubertini, F. (2023). Supervised machine learning techniques for predicting multiple damage classes in bridges. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2023. doi:10.1117/12.2664359.

Barkhordari, M. S., & Jawdhari, A. (2023). Machine learning based prediction model for plastic hinge length calculation of reinforced concrete structural walls. Advances in Structural Engineering, 26(9), 1714–1734. doi:10.1177/13694332231174252.

Markou, G., Bakas, N., & Megan van der Westhuizen, A. (2023). Use of AI and ML Algorithms in Developing Closed-Form Formulae for Structural Engineering Design. Artificial Intelligence and Machine Learning Techniques for Civil Engineering, 73–105. doi:10.4018/978-1-6684-5643-9.ch004.

Noori Hoshyar, A., Rashidi, M., Yu, Y., & Samali, B. (2023). Proposed Machine Learning Techniques for Bridge Structural Health Monitoring: A Laboratory Study. Remote Sensing, 15(8), 1984. doi:10.3390/rs15081984.

Gottardi, N., Freitag, S., & Meschke, G. (2023). Structural stress prediction based on deformations using artificial neural networks trained with artificial noise. PAMM, 22(1), e202200035. doi:10.1002/pamm.202200035.

Alotaibi, E., Mostafa, O., Nassif, N., Omar, M., & Arab, M. G. (2021). Prediction of Punching Shear Capacity for Fiber-Reinforced Concrete Slabs Using Neuro-Nomographs Constructed by Machine Learning. Journal of Structural Engineering, 147(6), 04021075. doi:10.1061/(asce)st.1943-541x.0003041.

Mostafa, O., Alotaibi, E., Al-Ateyat, A., Nassif, N., & Barakat, S. (2022). Prediction of Punching Shear Capacity for Fiber-Reinforced Polymer Concrete Slabs Using Machine Learning. 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates. doi:10.1109/aset53988.2022.9735107.

Elamary, A. S., & Taha, I. B. M. (2021). Determining the shear capacity of steel beams with corrugated webs by using optimised regression learner techniques. Materials, 14(9), 2364. doi:10.3390/ma14092364.

İpek, S., Degtyarev, V. V., Güneyisi, E. M., & Mansouri, I. (2022). GEP-based models for estimating the elastic shear buckling and ultimate loads of cold-formed steel channels with staggered slotted web perforations in shear. Structures, 46, 186–200. doi:10.1016/j.istruc.2022.10.060.

Hossain, M. A. S., Uddin, M. N., & Hossain, M. M. (2023). Prediction of compressive strength fiber-reinforced geopolymer concrete (FRGC) using gene expression programming (GEP). Materials Today: Proceedings. doi:10.1016/j.matpr.2023.02.458.

Alabduljabbar, H., Khan, M., Awan, H. H., Eldin, S. M., Alyousef, R., & Mohamed, A. M. (2023). Predicting ultra-high-performance concrete compressive strength using gene expression programming method. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2023.e02074.

Wang, T., Ma, J., & Wang, Y. (2021). Normalized shear strength of trapezoidal corrugated steel web dominated by local buckling. Engineering Structures, 233. doi:10.1016/j.engstruct.2021.111909.

Johansson, B., Maquoi, R., Sedlacek, G., Müller, C., & Beg, D. (2007). Commentary and worked examples to EN 1993-1-5 Plated Structural Elements. JRC scientific and technical reports, European Commissions, Brussels, Belgium.

Easley, J. T. (1975). Buckling Formulas for Corrugated Metal Shear Diaphragms. Journal of the Structural Division, 101(7), 1403–1417. doi:10.1061/jsdeag.0004095.

Easley, J. T., & McFarland, D. E. (1969). Buckling of Light-Gage Corrugated Metal Shear Diaphragms. Journal of the Structural Division, 95(7), 1497–1516. doi:10.1061/jsdeag.0002313.

Nikoomanesh, M. R., & Goudarzi, M. A. (2020). Experimental and numerical evaluation of shear load capacity for sinusoidal corrugated web girders. Thin-Walled Structures, 153. doi:10.1016/j.tws.2020.106798.

Pasternak, H., & Branka, P. (1999). Load-bearing behavior of corrugated web girders under local load application. Bauingenieur 74, 5(5), 219–244.

Elkawas, A. A., Hassanein, M. F., & El-Boghdadi, M. H. (2017). Numerical investigation on the nonlinear shear behavior of high-strength steel tapered corrugated web bridge girders. Engineering Structures, 134, 358–375. doi:10.1016/j.engstruct.2016.12.044.

Hajdú, G., Pasternak, H., & Papp, F. (2023). Lateral-torsional buckling assessment of I-beams with sinusoidally corrugated web. Journal of Constructional Steel Research, 207, 107916. doi:10.1016/j.jcsr.2023.107916.

Friedberg, R. M. (2010). A Learning Machine: Part I. IBM Journal of Research and Development, 2(1), 2–13. doi:10.1147/rd.21.0002.

Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint cs/0102027. doi:10.48550/arXiv.cs/0102027.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, United States.

Cramer, N. L. (2014). A representation for the adaptive generation of simple sequential programs. Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 240. doi:10.4324/9781315799674.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural selection. Bradford, Denver, United States.

Ferreira, C. (2006). Gene expression programming: mathematical modeling by an artificial intelligence. Springer, Berlin, Germany. doi:10.1007/3-540-32849-1.

Faessler, E., Hahn, U., & Schauble, S. (2023). GePI: Large-scale text mining, customized retrieval and flexible filtering of gene/protein interactions. Nucleic Acids Research, 51(W1), W237–W242. doi:10.1093/nar/gkad445.

Kontoni, D. P. N., Onyelowe, K. C., Ebid, A. M., Jahangir, H., Rezazadeh Eidgahee, D., Soleymani, A., & Ikpa, C. (2022). Gene Expression Programming (GEP) Modelling of Sustainable Building Materials including Mineral Admixtures for Novel Solutions. Mining, 2(4), 629–653. doi:10.3390/mining2040034.

Anas, M., Khan, M., & Basit, H. (2021). A Comparative Study on the Performance of Gene Expression Programming and Machine Learning Methods. International Journal of Scientific Research in Science and Technology, 8(2), 140–147. doi:10.32628/ijsrset1218226.

SIN Beam Technical Guide (2018). Corrugated Web Steel Beam: STEELCON Fabrication Inc. Ontario, Canada, 1-141

Pasternak, H., & Kubieniec, G. (2011). Present state of art of plate girders with sinusoidally corrugated web. In Proceedings of the 10th International Conference on Steel Space and Composite Structures, 1-15.

Śledziewski, K., & Górecki, M. (2020). Finite element analysis of the stability of a sinusoidal web in steel and composite steel-concrete girders. Materials, 13(5), 1041. doi:10.3390/ma13051041.

Górecki, M., & Śledziewski, K. (2022). Influence of corrugated web geometry on mechanical properties of I-beam: Laboratory tests. Materials, 15(1), 277. doi:10.3390/ma15010277.

Hannebauer, D. (2007). On the cross-sectional and bar load-bearing capacity of beams with profiled webs. Ph.D. Thesis, BTU Cottbus-Senftenberg, Cottbus, Germany. (In German).

Basiński, W. (2018). Shear Buckling of Plate Girders with Corrugated Web Restrained by End Stiffeners. Periodica Polytechnica Civil Engineering, 1-15. doi:10.3311/ppci.11554.

Yan-Lin, G., Qing-Lin, Z., Siokola, W., & Andreas, H. (2008). Flange buckling behavior of the H-shaped member with sinusoidal webs. Fifth International Conference on Thin-Walled Structures, 18-20 June, 2008, Gold Coast, Australia.

Nikoomanesh, M. R., & Goudarzi, M. A. (2021). Patch loading capacity for sinusoidal corrugated web girders. Thin-Walled Structures, 169, 108445. doi:10.1016/j.tws.2021.108445.

Abdullah, M. D., & Almayah, A. A. (2023). The Effect of Shear Span on the Behavior of Triangularly Corrugated Web Steel Girders. Civil Engineering Journal (Iran), 9(2), 372–380. doi:10.28991/CEJ-2023-09-02-09.

Wang, P. Y., Garlock, M. E. M., Zoli, T. P., & Quiel, S. E. (2021). Low-frequency sinusoids for enhanced shear buckling performance of thin plates. Journal of Constructional Steel Research, 177. doi:10.1016/j.jcsr.2020.106475.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-05-02

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Mazen Shrif, Zaid A. Al-Sadoon, Samer Barakat, Ahed Habib, Omar Mostafa

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message