Evaluating the Efficiency of Alkaline Activator with Silica-Rich Wastes in Stabilizing Cadmium-Contaminated Soil
Abstract
Doi: 10.28991/CEJ-2024-010-07-04
Full Text: PDF
Keywords
References
Pan, H., Shao, Y., Yan, P., Cheng, Y., Han, K. S., Nie, Z., Wang, C., Yang, J., Li, X., Bhattacharya, P., Mueller, K. T., & Liu, J. (2016). Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy, 1(5), 1-7. doi:10.1038/nenergy.2016.39.
Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 21–34. doi:10.1590/s1677-04202005000100003.
Mutter, G. M., Al-Madhhachi, A. T., & Rashed, R. R. (2017). Influence of soil stabilizing materials on lead polluted soils using Jet Erosion Tests. International Journal of Integrated Engineering, 9(1), 28-38.
Hasan, M. B., & Al-Madhhachi, A.-S. T. (2018). The Influence of Crude Oil on Mechanistic Detachment Rate Parameters. Geosciences, 8(9), 332. doi:10.3390/geosciences8090332.
Al-Madhhachi, A. S. T., Mutter, G. M., & Hasan, M. B. (2019). Predicting Mechanistic Detachment Model due to Lead-Contaminated Soil Treated with Iraqi Stabilizers. KSCE Journal of Civil Engineering, 23(7), 2898–2907. doi:10.1007/s12205-019-2312-3.
Khan, M. A., Khan, S., Khan, A., & Alam, M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. Science of the Total Environment, 601–602, 1591–1605. doi:10.1016/j.scitotenv.2017.06.030.
Charyulu, S. V., Akhila, C., Vineetha, Ch., & Akanksha, A. (2023). Stabilisation of soil using rice husk ash (RHA) and cement. E3S Web of Conferences, 391, 01201. doi:10.1051/e3sconf/202339101201.
Arbili, M. M., Karpuzcu, M., & Ali, M. M. (2020). Impact of Silica Fume on the Strength Characterizes of Contaminated Soil. Polytechnic Journal, 10(1), 6–11. doi:10.25156/ptj.v10n1y2020.pp6-11.
Hadi, N. S., Awadh, H. H., & Khalil, A. H. (2022). Experimental Study for the Effect of Additives Silica Fume on the Properties of the Synthetically Contaminated Soil. Environmental Research, Engineering and Management, 78(1), 46–56. doi:10.5755/j01.erem.78.1.29869.
Ramezani, S. J., Toufigh, M. M., & Toufigh, V. (2023). Utilization of Glass Powder and Silica Fume in Sugarcane Bagasse Ash-Based Geopolymer for Soil Stabilization. Journal of Materials in Civil Engineering, 35(4), 4023042. doi:10.1061/(asce)mt.1943-5533.0004704.
Lin, J., Zhang, Y., & Yang, Z. (2023). A Review of Recent Advances in Alkali-activated Materials from Silica-rich Wastes Derived Sodium Silicate Activators. Journal of Advanced Concrete Technology, 21(3), 189–203. doi:10.3151/JACT.21.189.
Muhammad, F., Huang, X., Li, S., Xia, M., Zhang, M., Liu, Q., Shehzad Hassan, M. A., Jiao, B., Yu, L., & Li, D. (2018). Strength evaluation by using polycarboxylate superplasticizer and solidification efficiency of Cr6+, Pb2+ and Cd2+ in composite based geopolymer. Journal of Cleaner Production, 188, 807–815. doi:10.1016/j.jclepro.2018.04.033.
Cristelo, N., Glendinning, S., Miranda, T., Oliveira, D., & Silva, R. (2012). Soil stabilisation using alkaline activation of fly ash for self-compacting rammed earth construction. Construction and Building Materials, 36, 727–735. doi:10.1016/j.conbuildmat.2012.06.037.
Wang, H., Zhu, Z., Pu, S., & Song, W. (2022). Solidification/Stabilization of Pb2+ and Cd2+ Contaminated Soil Using Fly Ash and GGBS Based Geopolymer. Arabian Journal for Science and Engineering, 47(4), 4385–4400. doi:10.1007/s13369-021-06109-1.
Rios, S., Ramos, C., Fonseca, A. V. Da, Cruz, N., & Rodrigues, C. (2016). Colombian Soil Stabilized with Geopolymers for Low Cost Roads. Procedia Engineering, 143, 1392–1400. doi:10.1016/j.proeng.2016.06.164.
Liu, F., Huang, X., Zhao, H., Hu, X., Wang, L., Zhao, X., Gao, P., & Ji, P. (2021). Stabilization of Cd and Pb in the contaminated soils by applying modified fly ash. Soil Ecology Letters, 3(3), 242–252. doi:10.1007/s42832-021-0078-2.
Mahedi, M., Cetin, B., & Dayioglu, A. Y. (2019). Leaching behavior of aluminum, copper, iron and zinc from cement activated fly ash and slag stabilized soils. Waste Management, 95, 334–355. doi:10.1016/j.wasman.2019.06.018.
Abhishek, H. S., Prashant, S., Kamath, M. V., & Kumar, M. (2022). Fresh mechanical and durability properties of alkali-activated fly ash-slag concrete: a review. Innovative Infrastructure Solutions, 7, 1-14. doi:10.1007/s41062-021-00711-w.
Turan, C., Javadi, A. A., Vinai, R., & Russo, G. (2022). Effects of Fly Ash Inclusion and Alkali Activation on Physical, Mechanical, and Chemical Properties of Clay. Materials, 15(13), 4628. doi:10.3390/ma15134628.
Ayila, A. A., & Ramana Murty, V. (2024). Experimental study on strength and microstructural properties of hydrous magnesium alkalization in colligation with tropical laterite soil at ambient temperature. Sādhanā, 49(1), 67. doi:10.1007/s12046-024-02435-w.
Kadhim, H. J., Saeed, K. A., & Kariem, N. O. (2019). Using geopolymers materials for remediation of lead-contaminated soil. Pollution Research, 38(4), 85–95.
Vosugh, S. (2001). Mechanical properties and Durability of Concretes Containing of Rice Husk Ash. PhD Thesis. Amirkabir University of Technology, Tehran, Iran.
Saeed, K. A., Kassim, K. A., Nur, H., & Yunus, N. Z. M. (2015). Strength of lime-cement stabilized tropical lateritic clay contaminated by heavy metals. KSCE Journal of Civil Engineering, 19(4), 887–892. doi:10.1007/s12205-013-0086-6.
BS 1377-8:1990. (1990). Methods of test for soils for civil engineering purposes: Part 8: Shear strength tests (effective stress). British Standard Institution, London, United Kingdom.
Saeed, K. A., Kassi, K. A., Nur, H., & Al-Hashimi, S. A. M. (2020). Molecular Characteristics of Cement-Lime Treated contaminated-Lateritic Clay Soil. IOP Conference Series: Materials Science and Engineering, 870(1), 012082. doi:10.1088/1757-899x/870/1/012082.
Joint Committee on Chemical Analysis by Powder Diffraction Methods. (1960). Powder Diffraction File. American Society for Testing and Materials, West Conshohocken, United States.
Smith, I. M., Griffiths, D. V., & Margetts, L. (2013). Programming the Finite Element Method. John Wiley & Sons, Chichester, United Kingdom, 5th edition. ch6, p. 238.
Parhi, P. S., Garanayak, L., Mahamaya, M., & Das, S. K. (2017). Stabilization of an Expansive Soil Using Alkali Activated Fly Ash Based Geopolymer. Advances in Characterization and Analysis of Expansive Soils and Rocks, 36–50. doi:10.1007/978-3-319-61931-6_4.
Borges, P. H. R., Nunes, V. A., Panzera, T. H., Schileo, G., & Feteira, A. (2016). The Influence of Rice Husk Ash Addition on the Properties of Metakaolin-Based Geopolymers. The Open Construction & Building Technology Journal, 10(1), 406–417. doi:10.2174/1874836801610010406.
Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. doi:10.1021/ci300367a.
Xi, Y., Wu, X., & Xiong, H. (2014). Solidification/Stabilization of Pb-contaminated Soils with Cement and Other Additives. Soil and Sediment Contamination: An International Journal, 23(8), 887–898. doi:10.1080/15320383.2014.890168.
Fernández-Jiménez, A., & Palomo, A. (2003). Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel, 82(18), 2259–2265. doi:10.1016/S0016-2361(03)00194-7.
Moon, D. H., & Dermatas, D. (2006). An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions. Engineering Geology, 85(1–2), 67–74. doi:10.1016/j.enggeo.2005.09.028.
Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., & MacPhee, D. E. (2011). Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO 2-H2O. Cement and Concrete Research, 41(9), 923–931. doi:10.1016/j.cemconres.2011.05.006.
Abdul Hussein Saeed, K., Kassim, K. A., Mohd Yunus, N. Z., & Nur, H. (2015). Physico-Chemical Characterization Of Lime Stabilized Tropical Kaolin Clay. Jurnal Teknologi, 72(3). doi:10.11113/jt.v72.4021.
Steveson, M., & Sagoe-Crentsil, K. (2005). Relationships between composition, structure and strength of inorganic polymers. Journal of Materials Science, 40(8), 2023–2036. doi:10.1007/s10853-005-1226-2.
Li, Q., Chen, J., Shi, Q., & Zhao, S. (2014). Macroscopic and microscopic mechanisms of cement-stabilized soft clay mixed with seawater by adding ultrafine silica fume. Advances in Materials Science and Engineering, 2014, 2014. doi:10.1155/2014/810652.
Sturm, P., Gluth, G. J. G., Brouwers, H. J. H., & Kühne, H. C. (2016). Synthesizing one-part geopolymers from rice husk ash. Construction and Building Materials, 124, 961–966. doi:10.1016/j.conbuildmat.2016.08.017.
Vesic, A. S. (1975). Bearing capacity of shallow foundations. Foundation engineering handbook, Van Nostrand Reinhold, New York, United States.
DOI: 10.28991/CEJ-2024-010-07-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Khitam Saeed, Sahar Al-Khyat, Zuhair Abd Hacheem, Sabah H. Fartosy
![Creative Commons License](http://licensebuttons.net/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.