Investigation of the Mechanical Behavior of Full-Scale Experimental Bugis-Makassar Timber House Structures
Abstract
Doi: 10.28991/CEJ-2024-010-06-04
Full Text: PDF
Keywords
References
Kaharuddin, M. S., Hutagalung, R., & Nurhamdan, N. (2011). Tectonic developments and their implications for the potential for earthquakes and tsunamis in the Sulawesi Island area. The 36th HAGI and 40th IAGI Annual Convention and Exhibition, 26-29 September, 2011, Makassar, Indonesia. (In Indonesian).
Indonesia-Investment. (2018). Natural Disasters in Indonesia. Indonesia-Investment, Bantul, Indonesia. Available online: https://www.indonesia-investments.com/business/risks/natural-disasters/item243 (accessed on March 2024).
BIG. (2023). Indonesian Ballad InaTEWS and Disaster. Geospatial Information Agency, Jakarta, Indonesia. Available online: https://big.go.id/en/content/article/indonesian-ballad-inatews-and-disaster (accessed on January 2024).
Reuters Graphics. (2018). Catastrophe in Sulawesi. Available online: https://fingfx.thomsonreuters.com/gfx/rngs/INDONESIA-QUAKE/010080KV15C/index.html (accessed on March 2024).
Sudarman, S., & Attar, M. (2020). Study of Vernacular House Endurance in South Sulawesi To Earthquake as a Result of Quality Change in Structure Material. Vitruvian Journal of Building Architecture and Environment, 10(1), 61. doi:10.22441/vitruvian.2020.v10i1.008.
PUPR. (2021). Review and Analysis of Indonesia Traditional House. Research Institute for Human Settlements (PUPR), Jakarta, Indonesia.
Idham, N. C. (2021). Directing Housing Developments for Achieving Earthquake Disasters Safety in Indonesia. IOP Conference Series: Earth and Environmental Science, 933(1), 012035. do:10.1088/1755-1315/933/1/012035.
Prihatini, Z. & Dewi, B.K. (2021). Why was the NTT earthquake felt in Makassar? This is an expert explanation. Jakarta, Indonesia. Available online: https://www.kompas.com/sains/read/2021/12/15/070500523/mengapa-gempa-ntt-terasa-hingga-makassar-ini-penjelasan-pakar?page=all#google_vignette (accessed on March 2024).
Parung, H. (2012). Seismic Design of Building. UNM Publisher Makassar, Sulawesi Selatan, Indonesia.
Sari, D. P., Sudirman, M., & Asmuliany, A. (2024). The Design of Earthquake Evacuation Spaces Based on Local Wisdom: A Case Study of Traditional Houses in South Sulawesi. Designs, 8(2), 30. doi:10.3390/designs8020030.
Barreca, F., Arcuri, N., Cardinali, G. D., Fazio, S. Di, Rollo, A., & Tirella, V. (2022). A Highly Sustainable Timber-Cork Modular System for Lightweight Temporary Housing. Civil Engineering Journal (Iran), 8(10), 2336–2352. doi:10.28991/CEJ-2022-08-10-020.
Doğan, M. (2010). Seismic analysis of traditional buildings: Bagdadi and Himis. Anadolu University Journal of Science and Technology A-Applied Sciences and Engineering, 11(1), 35-45.
Doǧangün, A., Tuluk, Ö. I., Livaoǧlu, R., & Acar, R. (2006). Traditional wooden buildings and their damages during earthquakes in Turkey. Engineering Failure Analysis, 13(6), 981–996. doi:10.1016/j.engfailanal.2005.04.011.
Erarslan, A. (2019). Timber construction systems in anatolian vernacular architecture. Bulletin of the Transilvania University of Brasov, Series II: Forestry, Wood Industry, Agricultural Food Engineering, 12(2), 37–52. doi:10.31926/but.fwiafe.2019.12.61.2.3.
Aktaş, Y. D. (2017). Seismic resistance of traditional timber-frame hımış structures in Turkey: a brief overview. International Wood Products Journal, 8, 21–28. doi:10.1080/20426445.2016.1273683.
Güçhan, N. Ş. (2018). History and Characteristics of Construction Techniques Used in Traditional Timber Ottoman Houses. International Journal of Architectural Heritage, 12(1), 1–20. doi:10.1080/15583058.2017.1336811.
Baǧbanci, M. B., & Baǧbanci, Ö. K. (2018). The Dynamic Properties of Historic Timber-Framed Masonry Structures in Bursa, Turkey. Shock and Vibration, 2018. doi:10.1155/2018/3257434.
Chand, B., Kaushik, H. B., & Das, S. (2020). Material Characterization of Traditional Assam-Type Wooden Houses in Northeastern India. Journal of Materials in Civil Engineering, 32(12), 10 1061 1943–5533 0003492. doi:10.1061/(asce)mt.1943-5533.0003492.
Chand, B., Kaushik, H. B., & Das, S. (2020). Lateral load behavior of connections in Assam-type wooden houses in the Himalayan region of India. Construction and Building Materials, 261. doi:10.1016/j.conbuildmat.2020.119904.
Paudel, S., Shima, N., & Fujii, T. (2018). Development of earthquake resilient housing in Nepal by development of earthquake introducing Japanese. AIJ Journal of Technology and Design, 24(57), 751–755. doi:10.3130/aijt.24.751.
Buchanan, A., & Moroder, D. (2017). Log house performance in the 2016 Kaikoura earthquake. Bulletin of the New Zealand Society for Earthquake Engineering, 50(2), 225–236. doi:10.5459/bnzsee.50.2.225-236.
HORIE, T., & KANEKO, S. (2017). Arrangement and Terminology of the Main Structural Members of the Understructure in Japanese and British Vernacular Houses. Journal of Architecture and Planning (Transactions of AIJ), 82(740), 2553–2563. doi:10.3130/aija.82.2553.
Kim, Y. M. (2020). Structural analysis and conceptual seismic design of large-span Korean traditional timber structure. Civil Engineering and Architecture, 8(2), 154–165. doi:10.13189/cea.2020.080213.
Vasconcelos, G., Lourenço, P. B., & Poletti, E. (2015). An Overview on the Seismic Behaviour of Timber Frame Structures. Historical Earthquake-Resistant Timber Frames in the Mediterranean Area. Springer, Cham, Switzerland. doi:10.1007/978-3-319-16187-7_10.
Crayssac, E., Song, X., Wu, Y., & Li, K. (2018). Lateral performance of mortise-tenon jointed traditional timber frames with wood panel infill. Engineering Structures, 161, 223–230. doi:10.1016/j.engstruct.2018.02.022.
Dzhurko, D., Haacke, B., Haberbosch, A., Köhne, L., König, N., Lode, F., Marx, A., Mühlnickel, L., Neunzig, N., Niemann, A., Polewka, H., Schmidtke, L., Von der Groeben, P. L. M., Wagemann, K., Thoma, F., Bothe, C., & Churkina, G. (2024). Future buildings as carbon sinks: Comparative analysis of timber-based building typologies regarding their carbon emissions and storage. Frontiers in Built Environment, 1330105. doi:10.3389/fbuil.2024.1330105.
Premrov, M., & Žegarac Leskovar, V. (2023). Innovative Structural Systems for Timber Buildings: A Comprehensive Review of Contemporary Solutions. Buildings, 13(7), 13. doi:10.3390/buildings13071820.
Meng, X., Yang, Q., Wei, J., & Li, T. (2018). Experimental investigation on the lateral structural performance of a traditional Chinese pre-Ming dynasty timber structure based on half-scale pseudo-static tests. Engineering Structures, 167, 582–591. doi:10.1016/j.engstruct.2018.04.077.
Huang, H., Sun, Z., Guo, T., & Li, P. (2017). Experimental study on the seismic performance of traditional Chuan-Dou style wood frames in Southern China. Structural Engineering International, 27(2), 246–254. doi:10.2749/101686617X14881932435817.
Meng, X., Li, T., & Yang, Q. (2019). Experimental study on the seismic mechanism of a full-scale traditional Chinese timber structure. Engineering Structures, 180, 484–493. doi:10.1016/j.engstruct.2018.11.055.
Sha, B., Xie, L., Yong, X., & Li, A. (2021). Hysteretic behavior of an ancient Chinese multi-layer timber substructure: A full-scale experimental test and analytical model. Journal of Building Engineering, 43. doi:10.1016/j.jobe.2021.103163.
Yu, P., Li, T., & Yang, Q. (2023). Inelastic Behavior of Mortise-Tenon Jointed Traditional Timber Frame with Free-Standing Columns. International Journal of Architectural Heritage. doi:10.1080/15583058.2023.2203669.
Ren, Q., Liang, B., Zhou, Y., Liu, G., Yang, Y., & Lu, L. (2024). Experimental Study on Wooden Pin Reinforcement of the Typical Mortise-Tenon Joints of Ancient Timber Frames. International Journal of Architectural Heritage. doi:10.1080/15583058.2024.2320408.
Li, S., Li, D., Chen, T., Milani, G., Shi, S., & Wang, S. (2023). Seismic performance of timber through-tenon joints with shrinkage flaw in tenon. Journal of Building Engineering, 65, 105702. doi:10.1016/j.jobe.2022.105702.
Atika, F. A. (2018). Transformation of the Architectural Form of a Bugis Traditional House on Jalan Usman Sadar III/36, Gresik. Prosiding Seminar Nasional Sains Dan Teknologi Terapan, September, 2018. (In Indonesian).
Al-Faaruuq, A. M., & AS, Z. (2020). Local Wisdom of the Bugis Baranti Traditional House in Sidrap Regency. Timpalaja: Architecture Student Journals, 2(1), 68–71. doi:10.24252/timpalaja.v2i1a8. (In Indonesian).
Nawawi, N. (2020). Technology for Building a Bugis House According to Panrita Bola Ugi. Technoscience: Science and Technology Information Media, 14(1), 12943. doi:10.24252/teknosains.v14i1.12943. (In Indonesian).
Puspitasari, S. D., Suprapto Siswosukarto, Harahap, S., & Pinta Astuti. (2022). Analysis of the Behavior and Resistance of Bugis Traditional Houses Against Earthquake Loads. Jurnal Teknik Sipil, 16(4), 280–288. doi:10.24002/jts.v16i4.5666.
Aryadi, A., Kahar, M. A., & Mardiana, R. (2022). Analysis of Response and Performance of Bugis-Makassar Stilt House Structures Using Pushover Analysis. IOP Conference Series: Earth and Environmental Science, 1117(1), 012032. doi:10.1088/1755-1315/1117/1/012032.
Basri, E., Saefudin, Rulliaty, S., & Yuniarti, K. (2009). Drying conditions for 11 potential ramin substitutes. Journal of Tropical Forest Science, 328-335.
Burley, A. L., Enright, N. J., & Mayfield, M. M. (2011). Demographic response and life history of traditional forest resource tree species in a tropical mosaic landscape in Papua New Guinea. Forest Ecology and Management, 262(5), 750–758. doi:10.1016/j.foreco.2011.05.008.
Aryadi, A., Parung, H., Irmawaty, R., & Amiruddin, A. A. (2023). Physical and Mechanical Properties of Bitti Wood in Bugis-Makassar Stilt House Structures. Prosiding Seminar Nasional Teknik Sipil UMS, May 2023.
Armin Aryadi, A. A., Parung, H., Irmawaty, R., & Amiruddin, A. (2023). Structural Design and Construction of Bugis-Makassar Stilt Houses Using BIM (Building Information Modeling) Applications. Prosiding-Snekti, 3.
ISO 16670:2003 (2003). Timber structures - Joints made with mechanical fasteners - Quasi-static reversed-cyclic test method. International Organization for Standardization (ISO), Geneva, Switzerland.
ASCE/SEI 41-17. (2017). Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers (ASCE), Reston, United States. doi:10.1061/9780784414859
Uang, C. M., & Bertero, V. V. (1988). Implications of recorded earthquake ground motions on seismic design of building structures. Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, United States.
Uang, C. M, & Bertero, V. V. (1990). Evaluation of seismic energy in structures. Earthquake Engineering & Structural Dynamics, 19(1), 77–90. doi:10.1002/eqe.4290190108.
DOI: 10.28991/CEJ-2024-010-06-04
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Armin Aryadi, Herman Parung, Rita Irmawaty, Andi Arwin Amiruddin
This work is licensed under a Creative Commons Attribution 4.0 International License.