Pulsed-Bed Column Adsorption for Triclosan Removal Using Macadamia Nut Shell Activated Carbon

Jareeya Yimrattanabovorn, Mananya Phalaiphai, Siriwan Nawong


Triclosan (TCS), a common antibacterial agent found in numerous personal care products, has been detected in wastewater and surface water and is now of significant environmental concern due to its health impacts. To mitigate this issue, various treatment methods have been explored. This study investigated the efficacy of Macadamia nut shell activated carbon (MAC) as an economical adsorbent for triclosan removal. A pulsed-bed column adsorption technique was applied to enhance adsorption capacity and prolong the operational lifespan of the column. Batch experiments were conducted to explore various parameters and adsorption capacity. Column experiments were carried out to investigate breakthrough curves and various associated parameters. In batch experiments, MAC exhibited a high TCS adsorption capacity of 119.05 mg/g, and optimal adsorption conditions were determined. Adsorption kinetics followed the pseudo-second-order model, and equilibrium data were well-fitted by both the Langmuir and Freundlich isotherm models. A pulsed-bed column adsorption showed superior performance compared to a fixed-bed column under specific conditions (flow rate: 10 mL/min, TCS initial concentration: 60 mg/L, bed column height: 10 cm) and removal bed height of only 6 cm, successfully enhancing TCS adsorption capacity to 53.40 mg/g and extending the operational lifespan of the column to 5,280 minutes. Adapting pulsed-bed columns for TCS removal from wastewater in the personal care product industry led to the extension of column life with increased adsorption capacity and minimized the use of adsorbents as a practical and environmentally friendly method.


Doi: 10.28991/CEJ-2024-010-05-019

Full Text: PDF


Macadamia Nut Shell Waste; Low-Cost Adsorbent; Triclosan; Pulsed-Bed Column; Fixed-Bed Column; Lifespan of Column.


Mhlongo, S. A., Sibali, L. L., & Ndibewu, P. P. (2023). Occurrence, quantification and removal of triclosan in wastewater of Umbogintwini Industrial Complex in KwaMakhutha, South Africa. South African Journal of Science, 119(11–12), 1-9. doi:10.17159/sajs.2023/14743.

Zhang, Q., Kroeze, C., Cui, S., Li, Y., Ma, L., Strokal, V., Vriend, P., Wang, M., van Wijnen, J., Xu, W., Zhang, F., & Strokal, M. (2024). COVID-19 estimated to have increased plastics, diclofenac, and triclosan pollution in more than half of urban rivers worldwide. Cell Reports Sustainability, 1(2023), 100001. doi:10.1016/j.crsus.2023.100001.

Milanović, M., Đurić, L., Milošević, N., & Milić, N. (2023). Comprehensive insight into triclosan—from widespread occurrence to health outcomes. Environmental Science and Pollution Research, 30(10), 25119–25140. doi:10.1007/s11356-021-17273-0.

Dar, O. I., Aslam, R., Pan, D., Sharma, S., Andotra, M., Kaur, A., Jia, A. Q., & Faggio, C. (2022). Source, bioaccumulation, degradability and toxicity of triclosan in aquatic environments: A review. Environmental Technology & Innovation, 25. doi:10.1016/j.eti.2021.102122.

Sinicropi, M. S., Iacopetta, D., Ceramella, J., Catalano, A., Mariconda, A., Pellegrino, M., Saturnino, C., Longo, P., & Aquaro, S. (2022). Triclosan: A Small Molecule with Controversial Roles. Antibiotics, 11(6), 735. doi:10.3390/antibiotics11060735.

Jabłońska-Trypuć, A. (2023). A review on triclosan in wastewater: Mechanism of action, resistance phenomenon, environmental risks, and sustainable removal techniques. Water Environment Research, 95(9). doi:10.1002/wer.10920.

Lee, J. S., Lee, J. S., & Kim, H. S. (2024). Toxic effects of triclosan in aquatic organisms: A review focusing on single and combined exposure of environmental conditions and pollutants. Science of the Total Environment, 920. doi:10.1016/j.scitotenv.2024.170902.

Li, L. (2021). Toxicity evaluation and by-products identification of triclosan ozonation and chlorination. Chemosphere, 263. doi:10.1016/j.chemosphere.2020.128223.

Phuekphong, A. F., Imwiset, K. J., & Ogawa, M. (2020). Organically Modified Bentonite as an Efficient and Reusable Adsorbent for Triclosan Removal from Water. Langmuir, 36(31), 9025–9034. doi:10.1021/acs.langmuir.0c00407.

Medellin-Castillo, N. A., González-Fernández, L. A., Ocampo-Pérez, R., Leyva-Ramos, R., Luiz-Dotto, G., Ramírez, R. F., Navarro-Frómeta, A. E., Aguilera-Flores, M. M., Carrasco-Marín, F., Hernández-Mendoza, H., & Aguirre-Contreras, S. (2022). Removal of triclosan from water by adsorption on activated carbons and photodegradation. Research Square (Preprint), 1-46. doi:10.21203/rs.3.rs-1440179/v1.

Duque-Brito, E., Lobato-Peralta, D. R., Okolie, J. A., Arias, D. M., Sebastian, P. J., & Okoye, P. U. (2024). Fast-kinetics adsorption of a binary solution containing cationic and ionic pollutants using high-surface area activated carbon derived from macadamia nutshell. Energy, Ecology and Environment, 9(1), 84–99. doi:10.1007/s40974-023-00304-6.

Wongcharee, S., Aravinthan, V., Erdei, L., & Sanongraj, W. (2018). Mesoporous activated carbon prepared from macadamia nut shell waste by carbon dioxide activation: Comparative characterisation and study of methylene blue removal from aqueous solution. Asia-Pacific Journal of Chemical Engineering, 13(2). doi:10.1002/apj.2179.

Machedi, S., Ejidike, I. P., Mtunzi, F. M., Pakade, V. E., & Klink, M. J. (2019). Chlorinated Phenols Sorption Performance by Macadamia Activated Carbon and Grafted Macadamia Activated Carbon: Characterization, Kinetics, and Thermodynamic studies. Oriental Journal of Chemistry, 35(5), 1469–1479. doi:10.13005/ojc/350501.

Al Mesfer, M. K., Danish, M., Khan, M. I., Ali, I. H., Hasan, M., & Jery, A. El. (2020). Continuous fixed bed co2 adsorption: Breakthrough, column efficiency, mass transfer zone. Processes, 8(10), 1233. doi:10.3390/pr8101233.

AL-Doury, M. M. I., & Alwan, M. H. (2021). Phenol Removal from Synthetic Wastewater by Adsorption Column. IOP Conference Series: Materials Science and Engineering, 1058(1), 012034. doi:10.1088/1757-899x/1058/1/012034.

Sazali, N., Harun, Z., & Sazali, N. (2020). A review on batch and column adsorption of various adsorbent towards the removal of heavy metal. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 67(2), 66–88.

Patel, H. (2019). Fixed-bed column adsorption study: a comprehensive review. Applied Water Science, 9(3), 45. doi:10.1007/s13201-019-0927-7.

Plangklang, C., & Sookkumnerd, T. (2023). Modelling and feedforward control of pulsed bed adsorption column for colorant removal in sugar syrup. Engineering Journal, 27(1), 29–38. doi:10.4186/ej.2023.27.1.29.

Wyllie, G. R. A. (2015). Spectroscopic determination of triclosan concentration in a series of antibacterial soaps: A first-year undergraduate laboratory experiment. Journal of Chemical Education, 92(1), 153–156. doi:10.1021/ed5004146.

Kaur, I., Gaba, S., Kaur, S., Kumar, R., & Chawla, J. (2018). Spectrophotometric determination of triclosan based on diazotization reaction: Response surface optimization using box-behnken design. Water Science & Technology, 77(9), 2204–2212. doi:10.2166/wst.2018.123.

Khader, E. H., Khudhur, R. H., Abbood, N. S., & Albayati, T. M. (2023). Decolourisation of Anionic Azo Dye in Industrial Wastewater Using Adsorption Process: Investigating Operating Parameters. Environmental Processes, 10(2), 34. doi:10.1007/s40710-023-00646-7.

Karthika, M., & Vasuki, M. (2021). Comparative Study of Adsorption of Different Dyes from Aqueous Media onto Physically Activated Carbon: Isotherm, Kinetic and Thermodynamic Parameter. International Journal of Applied Engineering, 16(6), 441–446.

Ndagijimana, P., Liu, X., Li, Z., Yu, G., & Wang, Y. (2020). The synthesis strategy to enhance the performance and cyclic utilization of granulated activated carbon-based sorbent for bisphenol A and triclosan removal. Environmental Science and Pollution Research, 27(13), 15758–15771. doi:10.1007/s11356-020-08095-7.

Sun, K., Li, S., Waigi, M. G., & Huang, Q. (2018). Nano-MnO2-mediated transformation of triclosan with humic molecules present: kinetics, products, and pathways. Environmental Science and Pollution Research, 25(15), 14416–14425. doi:10.1007/s11356-018-1637-7.

Sultana, M., Rownok, M. H., Sabrin, M., Rahaman, M. H., & Alam, S. M. N. (2022). A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. Cleaner Engineering and Technology, 6. doi:10.1016/j.clet.2021.100382.

Vidovix, T. B., Januário, E. F. D., Araújo, M. F., Bergamasco, R., & Vieira, A. M. S. (2022). Investigation of two new low-cost adsorbents functionalized with magnetic nanoparticles for the efficient removal of triclosan and a synthetic mixture. Environmental Science and Pollution Research, 29(31), 46813–46829. doi:10.1007/s11356-022-19187-x.

Triwiswara, M., Lee, C. G., Moon, J. K., & Park, S. J. (2020). Adsorption of triclosan from aqueous solution onto char derived from palm kernel shell. Desalination and Water Treatment, 177, 71–79. doi:10.5004/dwt.2020.24872.

Rodrigues, L. A., De Sousa Ribeiro, L. A., Thim, G. P., Ferreira, R. R., Alvarez-Mendez, M. O., & Coutinho, A. D. R. (2013). Activated carbon derived from macadamia nut shells: An effective adsorbent for phenol removal. Journal of Porous Materials, 20(4), 619–627. doi:10.1007/s10934-012-9635-5.

Dan, S., & Chattree, A. (2021). Influence of modifiers on point of zero charge (pHPZC) of PMMA modified and PMMA-PEG modified MnFe2O4 nanoparticles. International Journal of New Innovations in Engineering and Technology. 17(2), 25-29.

Alvarez-Garciá, S., MacEdo-Miranda, G., Martínez-Gallegos, S., Ordoñez-Regíl, E., López-Castillo, J., & Aguirre-Miranda, E. (2020). Removal of triclosan by CTAB-modified zeolite-rich tuff from aqueous solutions. MRS Advances, 5, 3257–3264. doi:10.1557/adv.2020.394.

Li, Q., Huang, L., Zhu, P., Zhong, M., & Xu, S. (2023). Rapid adsorption of triclosan and p-chloro-m-xylenol by nitrogen-doped magnetic porous carbon. Environmental Science and Pollution Research, 30(1), 1640–1655. doi:10.1007/s11356-022-22084-y.

Kaur, H., Bansiwal, A., Hippargi, G., & Pophali, G. R. (2018). Effect of hydrophobicity of pharmaceuticals and personal care products for adsorption on activated carbon: Adsorption isotherms, kinetics and mechanism. Environmental Science and Pollution Research, 25(21), 20473–20485. doi:10.1007/s11356-017-0054-7.

Almeida-Naranjo, C. E., Cuestas, J., Guerrero, V. H., & Villamar-Ayala, C. A. (2024). Efficient Decontamination: Caffeine/Triclosan Removal using Rice Husk in Batch and Fixed-Bed Columns. Water (Switzerland), 16(2), 197. doi:10.3390/w16020197.

Patel, H. (2020). Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta Indica) leaf powder. Scientific Reports, 10(1), 16895. doi:10.1038/s41598-020-72583-6.

Thrikkykkal, H., Antu, R., & Harikumar, P. S. (2023). Remediation of Pb (II), Cd (II), and Zn (II) from aqueous solutions using porous (styrene–divinylbenzene)/Cu–Ni bimetallic nanocomposite microspheres: continuous fixed-bed column study. Water Science and Technology, 87(9), 2277–2291. doi:10.2166/wst.2023.101.

Li, Y., Gong, F., Yang, W., & Liu, B. (2023). Effective triclosan removal by using porous aromatic frameworks in continuous fixed-bed column studies. Environmental Science and Pollution Research, 30(57), 121007–121013. doi:10.1007/s11356-023-30714-2.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-05-019


  • There are currently no refbacks.

Copyright (c) 2024 Jareeya Yimrattanabovorn, Mananya Phalaiphai, Siriwan Nawong

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.