GGBFS and Red-Mud based Alkali-Activated Concrete Beams: Flexural, Shear and Pull-Out Test Behavior

Hebah M. Al-Jabali, Ahmed A. El-Latief, Mohamed Salah Ezz, Shady Khairy, Amr A. Nada

Abstract


Geopolymers and antacid-enacted fasteners have accumulated critical interest as promising development and fixing materials because of their exceptional properties. Also, they bring about less contamination contrasted with regular concrete cements. Geopolymers address a clever class of suggested restricting materials blended through the basic enactment of bountiful aluminosilicate materials. The usage of geopolymer materials from side effects offers a critical decrease in carbon impression and yields positive natural effects. Geopolymer is progressively recognized as a plausible substitute for OPC concrete. In this review, sodium-based antacid activators, especially sodium metasilicate (Na2SiO3), were used for different blend extents. The boundaries researched included NaOH arrangements with a grouping of 8 M, alongside a Na2SiO3/NaOH proportion of 1. This paper evaluates the fundamental characteristics of geopolymer cement beams, employing red mud and GGBFS in powdered form as complete replacements for traditional concrete. Six bar specimens are tested under a two-point static loading condition, all cured at room temperature under ambient conditions. Of the six beams, three were exposed to flexural conduct testing with a molarity of 8 M, while the excess three beams were tried for shear conduct. The outcomes of testing geopolymer beams subjected to shear and bending loads indicated that the beams incorporating aluminum slag performed better than those incorporating blast furnace slag. Both types also demonstrated promising results compared to beams incorporating OPC, highlighting their potential environmental benefits compared to cement use.

 

Doi: 10.28991/CEJ-2024-010-05-09

Full Text: PDF


Keywords


Geopolymer Beams; Alkali Activator; Flexural; Shear; Pull-Out; GGBFS; Red-Mud.

References


Mehta, A., Siddique, R., Ozbakkaloglu, T., Uddin Ahmed Shaikh, F., & Belarbi, R. (2020). Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Construction and Building Materials, 257, 119548. doi:10.1016/j.conbuildmat.2020.119548.

Najimi, M., & Ghafoori, N. (2019). Engineering properties of natural pozzolan/slag-based alkali-activated concrete. Construction and Building Materials, 208, 46–62. doi:10.1016/j.conbuildmat.2019.02.107.

Zhang, H. Y., Yan, J., Kodur, V., & Cao, L. (2019). Mechanical behavior of concrete beams shear strengthened with textile reinforced geopolymer mortar. Engineering Structures, 196(February), 109348. doi:10.1016/j.engstruct.2019.109348.

Rodrigue, A., Duchesne, J., Fournier, B., Champagne, M., & Bissonnette, B. (2020). Alkali-silica reaction in alkali-activated combined slag and fly ash concretes: The tempering effect of fly ash on expansion and cracking. Construction and Building Materials, 251, 118968. doi:10.1016/j.conbuildmat.2020.118968.

Khan, I., Xu, T., Castel, A., Gilbert, R. I., & Babaee, M. (2019). Risk of early age cracking in geopolymer concrete due to restrained shrinkage. Construction and Building Materials, 229, 116840. doi:10.1016/j.conbuildmat.2019.116840.

Kalaivani, M., Shyamala, G., Ramesh, S., Angusenthil, K., & Jagadeesan, R. (2020). Performance evaluation of fly ash/slag based geopolymer concrete beams with addition of lime. Materials Today: Proceedings, 27, 652–656. doi:10.1016/j.matpr.2020.01.596.

Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2016). Structural performance of reinforced geopolymer concrete members: A review. Construction and Building Materials, 120, 251–264. doi:10.1016/j.conbuildmat.2016.05.088.

Pol Segura, I., Ranjbar, N., Juul Damø, A., Skaarup Jensen, L., Canut, M., & Arendt Jensen, P. (2023). A review: Alkali-activated cement and concrete production technologies available in the industry. Heliyon, 9(5), 15718. doi:10.1016/j.heliyon.2023.e15718.

Saibaba, K., & Kondraivendhan, B. (2023). Investigation on enhancing the mechanical properties of Alkali-Activated concrete based on fly ash with wollastonite. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.08.120.

Nabavi, F. (2018). Mechanical properties and durability performance of polymer-modified concrete. Fib Symposium, 40, 3493–3503.

Garg, A., Singhal, D., & Parveen. (2019). Review on the durability properties of sustainable alkali activated concrete. Materials Today: Proceedings, 33(3), 1643–1649. doi:10.1016/j.matpr.2020.06.370.

Davidotis, J. (1994). Properties of Geopolymer Cements. First International Conference on Alkaline Cements and Concretes, 11-14 October,1994, Kiev, Ukraine.

Mathew, G., & Joseph, B. (2018). Flexural behaviour of geopolymer concrete beams exposed to elevated temperatures. Journal of Building Engineering, 15, 311–317. doi:10.1016/j.jobe.2017.09.009.

Un, C. H., Sanjayan, J. G., San Nicolas, R., & Van Deventer, J. S. J. (2015). Predictions of long-term deflection of geopolymer concrete beams. Construction and Building Materials, 94, 10-19. doi:10.1016/j.conbuildmat.2015.06.030.

Li, Z., Thomas, R. J., & Peethamparan, S. (2019). Alkali-silica reactivity of alkali-activated concrete subjected to ASTM C 1293 and 1567 alkali-silica reactivity tests. Cement and Concrete Research, 123, 105796. doi:10.1016/j.cemconres.2019.105796.

Saranya, P., Nagarajan, P., & Shashikala, A. P. (2020). Behaviour of GGBS-dolomite geopolymer concrete short column under axial loading. Journal of Building Engineering, 30(December), 101232. doi:10.1016/j.jobe.2020.101232.

Refaie, F. A. Z., Abbas, R., & Fouad, F. H. (2020). Sustainable construction system with Egyptian metakaolin based geopolymer concrete sandwich panels. Case Studies in Construction Materials, 13. doi:10.1016/j.cscm.2020.e00436.

Ahmed, H. Q., Jaf, D. K., & Yaseen, S. A. (2020). Flexural strength and failure of geopolymer concrete beams reinforced with carbon fibre-reinforced polymer bars. Construction and Building Materials, 231, 117185. doi:10.1016/j.conbuildmat.2019.117185.

Atiş, C. D., Görür, E. B., Karahan, O., Bilim, C., Ilkentapar, S., & Luga, E. (2015). Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Construction and Building Materials, 96, 673–678. doi:10.1016/j.conbuildmat.2015.08.089.

Hossiney, N., Sepuri, H. K., Mohan, M. K., H R, A., Govindaraju, S., & Chyne, J. (2020). Alkali-activated concrete paver blocks made with recycled asphalt pavement (RAP) aggregates. Case Studies in Construction Materials, 12, 322. doi:10.1016/j.cscm.2019.e00322.

Zhang, P., Wang, K., Li, Q., Wang, J., & Ling, Y. (2020). Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders - A review. Journal of Cleaner Production, 258, 120896. doi:10.1016/j.jclepro.2020.120896.

Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40–48. doi:10.1016/j.cemconres.2017.02.009.

Oyebisi, S., & Alomayri, T. (2023). Artificial intelligence-based prediction of strengths of slag-ash-based geopolymer concrete using deep neural networks. Construction and Building Materials, 400, 132606. doi:10.1016/j.conbuildmat.2023.132606.

Chanda, S. S., & Guchhait, S. (2024). A comprehensive review on the factors influencing engineering characteristics of lightweight geopolymer concrete. Journal of Building Engineering, 86, 108887. doi:10.1016/j.jobe.2024.108887.

Azunna, S. U., Aziz, F. N. A. B. A., Abbas Al-Ghazali, N., Rashid, R. S. M., & Bakar, N. A. (2024). Review on the mechanical properties of rubberized geopolymer concrete. Cleaner Materials, 11, 100225. doi:10.1016/j.clema.2024.100225.

Thomas, R. J., & Peethamparan, S. (2015). Alkali-activated concrete: Engineering properties and stress-strain behavior. Construction and Building Materials, 93, 49–56. doi:10.1016/j.conbuildmat.2015.04.039.

Hassan, H., El-Gamal, S. M. A., Shehab, M. S. H., & Mohsen, A. (2023). Development of green ternary-blended-geopolymers for multifunctional engineering applications. Construction and Building Materials, 409, 133869. doi:10.1016/j.conbuildmat.2023.133869.

Subramanian, S., Davis, R., & Thomas, B. S. (2024). Full-scale static behaviour of prestressed geopolymer concrete sleepers reinforced with steel fibres. Construction and Building Materials, 412, 134693. doi:10.1016/j.conbuildmat.2023.134693.

Martínez, A., & Miller, S. A. (2023). A review of drivers for implementing geopolymers in construction: Codes and constructability. Resources, Conservation and Recycling, 199, 107238. doi:10.1016/j.resconrec.2023.107238.

Tran, T. T., Pham, T. M., & Hao, H. (2020). Effect of hybrid fibers on shear behaviour of geopolymer concrete beams reinforced by basalt fiber reinforced polymer (BFRP) bars without stirrups. Composite Structures, 243, 112236. doi:10.1016/j.compstruct.2020.112236.

Pires, E. F. C., Lima, T. V., Marinho, F. J. V., De Vargas, A. S., Mounzer, E. C., Darwish, F. A. I., & Silva, F. J. (2019). Physical nonlinearity of precast reinforced geopolymer concrete beams. Journal of Materials Research and Technology, 8(2), 2083–2091. doi:10.1016/j.jmrt.2019.01.016.

Abdulkareem, M., Havukainen, J., & Horttanainen, M. (2019). How environmentally sustainable are fibre reinforced alkali-activated concretes? Journal of Cleaner Production, 236, 117601. doi:10.1016/j.jclepro.2019.07.076.

Hassan, A., Arif, M., & Shariq, M. (2020). A review of properties and behaviour of reinforced geopolymer concrete structural elements- A clean technology option for sustainable development. Journal of Cleaner Production, 245. doi:10.1016/j.jclepro.2019.118762.

Raj, S. D., Ganesan, N., Abraham, R., & Raju, A. (2016). Behavior of geopolymer and conventional concrete beam column joints under reverse cyclic loading. Advances in Concrete Construction, 4(3), 161–172. doi:10.12989/acc.2016.4.3.161.

Aouan, B., Alehyen, S., Fadil, M., El Alouani, M., Saufi, H., & Taibi, M. (2023). Characteristics, microstructures, and optimization of the geopolymer paste based on three aluminosilicate materials using a mixture design methodology. Construction and Building Materials, 384, 131475. doi:10.1016/j.conbuildmat.2023.131475.

Lekshmi, S., Sudhakumar, J., & Thomas, S. (2023). Application of clay in geopolymer system: A state-of-the-art review. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.04.083.

Islam, A., Alengaram, U. J., Jumaat, M. Z., & Bashar, I. I. (2014). The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials and Design, 56, 833–841. doi:10.1016/j.matdes.2013.11.080.

Visintin, P., Mohamed Ali, M. S., Albitar, M., & Lucas, W. (2017). Shear behaviour of geopolymer concrete beams without stirrups. Construction and Building Materials, 148, 10–21. doi:10.1016/j.conbuildmat.2017.05.010.

Fan, J., Zhu, H., Shi, J., Li, Z., & Yang, S. (2020). Influence of slag content on the bond strength, chloride penetration resistance, and interface phase evolution of concrete repaired with alkali activated slag/fly ash. Construction and Building Materials, 263, 120639. doi:10.1016/j.conbuildmat.2020.120639.

ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.

ASTM C618-12a. (2012). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States.

ASTM C494/C494M-17. (2017). Standard Specification for Chemical Admixtures for Concrete. Annual Book of ASTM Standards. ASTM International, Pennsylvania, United States.

ASTM C109/C109M. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-20.

ASTM C230/C230M-20. (2021). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0230_C0230M-20.

Prestera, J. R., Boyle, M., Crocker, D. A., Chairman, S. B., Abdun-Nur, E. A., Barton, S. G., ... & Yuan, R. L. (1998). Standard Practice for Selecting Proportions for Structural Lightweight Concrete (ACI 211.2-98). Reported by ACI Committee 211, American Concrete Institute, Michigan, United States.

ASTM D7913/D7913M-14 (2020). Standard Test Method for Bond Strength of Fiber-Reinforced Polymer Matrix Composite Bars to Concrete by Pullout Testing. ASTM International, Pennsylvania, United States. doi:10.1520/D7913_D7913M-14R20.

Maranan, G. B., Manalo, A. C., Benmokrane, B., Karunasena, W., & Mendis, P. (2015). Evaluation of the flexural strength and serviceability of geopolymer concrete beams reinforced with glass-fibre-reinforced polymer (GFRP) bars. Engineering Structures, 101, 529–541. doi:10.1016/j.engstruct.2015.08.003.

Madheswaran, C. K., Ambily, P. S., Dattatreya, J. K., & Ramesh, G. (2015). Experimental studies on behaviour of reinforced geopolymer concrete beams subjected to monotonic static loading. Journal of the institution of engineers (India): Series A, 96, 139-149. doi:10.1007/s40030-015-0115-1.

Prasad, N. D., & Kumar, Y. H. (2017). Study of behaviour of geo-polymer concrete with respect to its mechanical properties of GGBS and flyash. International Journal of Civil Engineering and Technology, 8(2), 264–273.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-05-09

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Hebah Mohammad Al-jabali, Ahmed Abd El-Latief, Mohamed salah Ezz, Shady Khairy, Amr Abd El Aziz Nada

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message