GGBFS and Red-Mud based Alkali-Activated Concrete Beams: Flexural, Shear and Pull-Out Test Behavior
Abstract
Doi: 10.28991/CEJ-2024-010-05-09
Full Text: PDF
Keywords
References
Mehta, A., Siddique, R., Ozbakkaloglu, T., Uddin Ahmed Shaikh, F., & Belarbi, R. (2020). Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties. Construction and Building Materials, 257, 119548. doi:10.1016/j.conbuildmat.2020.119548.
Najimi, M., & Ghafoori, N. (2019). Engineering properties of natural pozzolan/slag-based alkali-activated concrete. Construction and Building Materials, 208, 46–62. doi:10.1016/j.conbuildmat.2019.02.107.
Zhang, H. Y., Yan, J., Kodur, V., & Cao, L. (2019). Mechanical behavior of concrete beams shear strengthened with textile reinforced geopolymer mortar. Engineering Structures, 196(February), 109348. doi:10.1016/j.engstruct.2019.109348.
Rodrigue, A., Duchesne, J., Fournier, B., Champagne, M., & Bissonnette, B. (2020). Alkali-silica reaction in alkali-activated combined slag and fly ash concretes: The tempering effect of fly ash on expansion and cracking. Construction and Building Materials, 251, 118968. doi:10.1016/j.conbuildmat.2020.118968.
Khan, I., Xu, T., Castel, A., Gilbert, R. I., & Babaee, M. (2019). Risk of early age cracking in geopolymer concrete due to restrained shrinkage. Construction and Building Materials, 229, 116840. doi:10.1016/j.conbuildmat.2019.116840.
Kalaivani, M., Shyamala, G., Ramesh, S., Angusenthil, K., & Jagadeesan, R. (2020). Performance evaluation of fly ash/slag based geopolymer concrete beams with addition of lime. Materials Today: Proceedings, 27, 652–656. doi:10.1016/j.matpr.2020.01.596.
Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2016). Structural performance of reinforced geopolymer concrete members: A review. Construction and Building Materials, 120, 251–264. doi:10.1016/j.conbuildmat.2016.05.088.
Pol Segura, I., Ranjbar, N., Juul Damø, A., Skaarup Jensen, L., Canut, M., & Arendt Jensen, P. (2023). A review: Alkali-activated cement and concrete production technologies available in the industry. Heliyon, 9(5), 15718. doi:10.1016/j.heliyon.2023.e15718.
Saibaba, K., & Kondraivendhan, B. (2023). Investigation on enhancing the mechanical properties of Alkali-Activated concrete based on fly ash with wollastonite. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.08.120.
Nabavi, F. (2018). Mechanical properties and durability performance of polymer-modified concrete. Fib Symposium, 40, 3493–3503.
Garg, A., Singhal, D., & Parveen. (2019). Review on the durability properties of sustainable alkali activated concrete. Materials Today: Proceedings, 33(3), 1643–1649. doi:10.1016/j.matpr.2020.06.370.
Davidotis, J. (1994). Properties of Geopolymer Cements. First International Conference on Alkaline Cements and Concretes, 11-14 October,1994, Kiev, Ukraine.
Mathew, G., & Joseph, B. (2018). Flexural behaviour of geopolymer concrete beams exposed to elevated temperatures. Journal of Building Engineering, 15, 311–317. doi:10.1016/j.jobe.2017.09.009.
Un, C. H., Sanjayan, J. G., San Nicolas, R., & Van Deventer, J. S. J. (2015). Predictions of long-term deflection of geopolymer concrete beams. Construction and Building Materials, 94, 10-19. doi:10.1016/j.conbuildmat.2015.06.030.
Li, Z., Thomas, R. J., & Peethamparan, S. (2019). Alkali-silica reactivity of alkali-activated concrete subjected to ASTM C 1293 and 1567 alkali-silica reactivity tests. Cement and Concrete Research, 123, 105796. doi:10.1016/j.cemconres.2019.105796.
Saranya, P., Nagarajan, P., & Shashikala, A. P. (2020). Behaviour of GGBS-dolomite geopolymer concrete short column under axial loading. Journal of Building Engineering, 30(December), 101232. doi:10.1016/j.jobe.2020.101232.
Refaie, F. A. Z., Abbas, R., & Fouad, F. H. (2020). Sustainable construction system with Egyptian metakaolin based geopolymer concrete sandwich panels. Case Studies in Construction Materials, 13. doi:10.1016/j.cscm.2020.e00436.
Ahmed, H. Q., Jaf, D. K., & Yaseen, S. A. (2020). Flexural strength and failure of geopolymer concrete beams reinforced with carbon fibre-reinforced polymer bars. Construction and Building Materials, 231, 117185. doi:10.1016/j.conbuildmat.2019.117185.
Atiş, C. D., Görür, E. B., Karahan, O., Bilim, C., Ilkentapar, S., & Luga, E. (2015). Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Construction and Building Materials, 96, 673–678. doi:10.1016/j.conbuildmat.2015.08.089.
Hossiney, N., Sepuri, H. K., Mohan, M. K., H R, A., Govindaraju, S., & Chyne, J. (2020). Alkali-activated concrete paver blocks made with recycled asphalt pavement (RAP) aggregates. Case Studies in Construction Materials, 12, 322. doi:10.1016/j.cscm.2019.e00322.
Zhang, P., Wang, K., Li, Q., Wang, J., & Ling, Y. (2020). Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders - A review. Journal of Cleaner Production, 258, 120896. doi:10.1016/j.jclepro.2020.120896.
Provis, J. L. (2018). Alkali-activated materials. Cement and Concrete Research, 114, 40–48. doi:10.1016/j.cemconres.2017.02.009.
Oyebisi, S., & Alomayri, T. (2023). Artificial intelligence-based prediction of strengths of slag-ash-based geopolymer concrete using deep neural networks. Construction and Building Materials, 400, 132606. doi:10.1016/j.conbuildmat.2023.132606.
Chanda, S. S., & Guchhait, S. (2024). A comprehensive review on the factors influencing engineering characteristics of lightweight geopolymer concrete. Journal of Building Engineering, 86, 108887. doi:10.1016/j.jobe.2024.108887.
Azunna, S. U., Aziz, F. N. A. B. A., Abbas Al-Ghazali, N., Rashid, R. S. M., & Bakar, N. A. (2024). Review on the mechanical properties of rubberized geopolymer concrete. Cleaner Materials, 11, 100225. doi:10.1016/j.clema.2024.100225.
Thomas, R. J., & Peethamparan, S. (2015). Alkali-activated concrete: Engineering properties and stress-strain behavior. Construction and Building Materials, 93, 49–56. doi:10.1016/j.conbuildmat.2015.04.039.
Hassan, H., El-Gamal, S. M. A., Shehab, M. S. H., & Mohsen, A. (2023). Development of green ternary-blended-geopolymers for multifunctional engineering applications. Construction and Building Materials, 409, 133869. doi:10.1016/j.conbuildmat.2023.133869.
Subramanian, S., Davis, R., & Thomas, B. S. (2024). Full-scale static behaviour of prestressed geopolymer concrete sleepers reinforced with steel fibres. Construction and Building Materials, 412, 134693. doi:10.1016/j.conbuildmat.2023.134693.
Martínez, A., & Miller, S. A. (2023). A review of drivers for implementing geopolymers in construction: Codes and constructability. Resources, Conservation and Recycling, 199, 107238. doi:10.1016/j.resconrec.2023.107238.
Tran, T. T., Pham, T. M., & Hao, H. (2020). Effect of hybrid fibers on shear behaviour of geopolymer concrete beams reinforced by basalt fiber reinforced polymer (BFRP) bars without stirrups. Composite Structures, 243, 112236. doi:10.1016/j.compstruct.2020.112236.
Pires, E. F. C., Lima, T. V., Marinho, F. J. V., De Vargas, A. S., Mounzer, E. C., Darwish, F. A. I., & Silva, F. J. (2019). Physical nonlinearity of precast reinforced geopolymer concrete beams. Journal of Materials Research and Technology, 8(2), 2083–2091. doi:10.1016/j.jmrt.2019.01.016.
Abdulkareem, M., Havukainen, J., & Horttanainen, M. (2019). How environmentally sustainable are fibre reinforced alkali-activated concretes? Journal of Cleaner Production, 236, 117601. doi:10.1016/j.jclepro.2019.07.076.
Hassan, A., Arif, M., & Shariq, M. (2020). A review of properties and behaviour of reinforced geopolymer concrete structural elements- A clean technology option for sustainable development. Journal of Cleaner Production, 245. doi:10.1016/j.jclepro.2019.118762.
Raj, S. D., Ganesan, N., Abraham, R., & Raju, A. (2016). Behavior of geopolymer and conventional concrete beam column joints under reverse cyclic loading. Advances in Concrete Construction, 4(3), 161–172. doi:10.12989/acc.2016.4.3.161.
Aouan, B., Alehyen, S., Fadil, M., El Alouani, M., Saufi, H., & Taibi, M. (2023). Characteristics, microstructures, and optimization of the geopolymer paste based on three aluminosilicate materials using a mixture design methodology. Construction and Building Materials, 384, 131475. doi:10.1016/j.conbuildmat.2023.131475.
Lekshmi, S., Sudhakumar, J., & Thomas, S. (2023). Application of clay in geopolymer system: A state-of-the-art review. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.04.083.
Islam, A., Alengaram, U. J., Jumaat, M. Z., & Bashar, I. I. (2014). The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Materials and Design, 56, 833–841. doi:10.1016/j.matdes.2013.11.080.
Visintin, P., Mohamed Ali, M. S., Albitar, M., & Lucas, W. (2017). Shear behaviour of geopolymer concrete beams without stirrups. Construction and Building Materials, 148, 10–21. doi:10.1016/j.conbuildmat.2017.05.010.
Fan, J., Zhu, H., Shi, J., Li, Z., & Yang, S. (2020). Influence of slag content on the bond strength, chloride penetration resistance, and interface phase evolution of concrete repaired with alkali activated slag/fly ash. Construction and Building Materials, 263, 120639. doi:10.1016/j.conbuildmat.2020.120639.
ASTM C33/C33M-18. (2023). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
ASTM C618-12a. (2012). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States.
ASTM C494/C494M-17. (2017). Standard Specification for Chemical Admixtures for Concrete. Annual Book of ASTM Standards. ASTM International, Pennsylvania, United States.
ASTM C109/C109M. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-20.
ASTM C230/C230M-20. (2021). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0230_C0230M-20.
Prestera, J. R., Boyle, M., Crocker, D. A., Chairman, S. B., Abdun-Nur, E. A., Barton, S. G., ... & Yuan, R. L. (1998). Standard Practice for Selecting Proportions for Structural Lightweight Concrete (ACI 211.2-98). Reported by ACI Committee 211, American Concrete Institute, Michigan, United States.
ASTM D7913/D7913M-14 (2020). Standard Test Method for Bond Strength of Fiber-Reinforced Polymer Matrix Composite Bars to Concrete by Pullout Testing. ASTM International, Pennsylvania, United States. doi:10.1520/D7913_D7913M-14R20.
Maranan, G. B., Manalo, A. C., Benmokrane, B., Karunasena, W., & Mendis, P. (2015). Evaluation of the flexural strength and serviceability of geopolymer concrete beams reinforced with glass-fibre-reinforced polymer (GFRP) bars. Engineering Structures, 101, 529–541. doi:10.1016/j.engstruct.2015.08.003.
Madheswaran, C. K., Ambily, P. S., Dattatreya, J. K., & Ramesh, G. (2015). Experimental studies on behaviour of reinforced geopolymer concrete beams subjected to monotonic static loading. Journal of the institution of engineers (India): Series A, 96, 139-149. doi:10.1007/s40030-015-0115-1.
Prasad, N. D., & Kumar, Y. H. (2017). Study of behaviour of geo-polymer concrete with respect to its mechanical properties of GGBS and flyash. International Journal of Civil Engineering and Technology, 8(2), 264–273.
DOI: 10.28991/CEJ-2024-010-05-09
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Hebah Mohammad Al-jabali, Ahmed Abd El-Latief, Mohamed salah Ezz, Shady Khairy, Amr Abd El Aziz Nada
This work is licensed under a Creative Commons Attribution 4.0 International License.