Artificial Neural Network-Based Prediction of Physical and Mechanical Properties of Concrete Containing Glass Aggregates
Abstract
Doi: 10.28991/CEJ-2024-010-05-018
Full Text: PDF
Keywords
References
Guo, P., Meng, W., Nassif, H., Gou, H., & Bao, Y. (2020). New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Construction and Building Materials, 257. doi:10.1016/j.conbuildmat.2020.119579.
Kuri, J. C., Hosan, A., Shaikh, F. U. A., & Biswas, W. K. (2023). The Effect of Recycled Waste Glass as a Coarse Aggregate on the Properties of Portland Cement Concrete and Geopolymer Concrete. Buildings, 13(3), 586. doi:10.3390/buildings13030586.
Gerges, N. N., Issa, C. A., Fawaz, S. A., Jabbour, J., Jreige, J., & Yacoub, A. (2018). Recycled Glass Concrete: Coarse and Fine Aggregates. European Journal of Engineering and Technology Research, 3(1), 1–9. doi:10.24018/ejeng.2018.3.1.533.
Choi, S. Y., Choi, Y. S., & Yang, E. I. (2017). Effects of heavy weight waste glass recycled as fine aggregate on the mechanical properties of mortar specimens. Annals of Nuclear Energy, 99, 372–382. doi:10.1016/j.anucene.2016.09.035.
Tamanna, N., Tuladhar, R., & Sivakugan, N. (2020). Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials, 239. doi:10.1016/j.conbuildmat.2019.117804.
Parghi, A., & Shahria Alam, M. (2016). Physical and mechanical properties of cementitious composites containing recycled glass powder (RGP) and styrene butadiene rubber (SBR). Construction and Building Materials, 104, 34–43. doi:10.1016/j.conbuildmat.2015.12.006.
Balan, L. A., Anupam, B. R., & Sharma, S. (2021). Thermal and mechanical performance of cool concrete pavements containing waste glass. Construction and Building Materials, 290. doi:10.1016/j.conbuildmat.2021.123238.
Topçu, I. B., & Canbaz, M. (2004). Properties of concrete containing waste glass. Cement and Concrete Research, 34(2), 267–274. doi:10.1016/j.cemconres.2003.07.003.
Khan, M. N. N., & Sarker, P. K. (2020). Effect of waste glass fine aggregate on the strength, durability and high temperature resistance of alkali-activated fly ash and GGBFS blended mortar. Construction and Building Materials, 263. doi:10.1016/j.conbuildmat.2020.120177.
Du, H., & Tan, K. H. (2014). Concrete with recycled glass as fine aggregates. ACI Materials Journal, 111(1), 47–57. doi:10.14359/51686446.
Olofinnade, O. M., Ndambuki, J. M., Ede, A. N., & Olukanni, D. O. (2016). Effect of substitution of crushed waste glass as partial replacement for natural fine and coarse aggregate in concrete. Materials Science Forum, 866, 58–62. doi:10.4028/www.scientific.net/MSF.866.58.
Tamanna, N. (2020). Use of waste glass as aggregate and cement replacement in concrete. Ph.D. Thesis, James Cook University, Townsville City, Australia.
Elavarasan, D., & Dhanalakshmi, G. (2016). Experimental Study on Waste Glass as a Partial Replacing Material in Concrete for Fine Aggregate. International Journal of Advanced Research in Biology Engineering Science and Technology, 2(3), 116–120.
Hasan, N. M. S., Shaurdho, N. M. N., Sobuz, M. H. R., Meraz, M. M., Islam, M. S., & Miah, M. J. (2023). Utilization of Waste Glass Cullet as Partial Substitutions of Coarse Aggregate to Produce Eco-Friendly Concrete: Role of Metakaolin as Cement Replacement. Sustainability (Switzerland), 15(14), 11254. doi:10.3390/su151411254.
Olofinnade, O. M., Ede, A. N., Ndambuki, J. M., Ngene, B. U., Akinwumi, I. I., & Ofuyatan, O. (2018). Strength and microstructure of eco-concrete produced using waste glass as partial and complete replacement for sand. Cogent Engineering, 5(1), 1483860. doi:10.1080/23311916.2018.1483860.
Wright, J. R., Cartwright, C., Fura, D., & Rajabipour, F. (2014). Fresh and Hardened Properties of Concrete Incorporating Recycled Glass as 100% Sand Replacement. Journal of Materials in Civil Engineering, 26(10). doi:10.1061/(asce)mt.1943-5533.0000979.
Vijaya, M., Reddy, S., Sumalatha, P., Madhuri, M., & Ashalatha, K. (2015). Incorporation of Waste Glass Powder as Partial Replacement of Fine Aggregate in Cement Concrete. International Journal of Scientific & Engineering Research, 6(12), 405–409.
Wu, D., Mao, Z., Zhang, J., Li, S., & Ma, Q. (2023). Performance evaluation of concrete with waste glass after elevated temperatures. Construction and Building Materials, 368. doi:10.1016/j.conbuildmat.2023.130486.
Li, S., Zhang, J., Du, G., Mao, Z., Ma, Q., Luo, Z., Miao, Y., & Duan, Y. (2022). Properties of concrete with waste glass after exposure to elevated temperatures. Journal of Building Engineering, 57. doi:10.1016/j.jobe.2022.104822.
Terro, M. J. (2006). Properties of concrete made with recycled crushed glass at elevated temperatures. Building and Environment, 41(5), 633–639. doi:10.1016/j.buildenv.2005.02.018.
Chindaprasirt, P., Lao-un, J., Zaetang, Y., Wongkvanklom, A., Phoo-ngernkham, T., Wongsa, A., & Sata, V. (2022). Thermal insulating and fire resistance performances of geopolymer mortar containing auto glass waste as fine aggregate. Journal of Building Engineering, 60. doi:10.1016/j.jobe.2022.105178.
Gamil, Y. (2023). Machine learning in concrete technology: A review of current researches, trends, and applications. Frontiers in Built Environment, 9. doi:10.3389/fbuil.2023.1145591.
Kim, G. (2023). New Advances in Cement and Concrete Research. Materials, 16(11), 4162. doi:10.3390/ma16114162.
Dao, D. Van, Ly, H. B., Vu, H. L. T., Le, T. T., & Pham, B. T. (2020). Investigation and optimization of the C-ANN structure in predicting the compressive strength of foamed concrete. Materials, 13(5), 1072. doi:10.3390/ma13051072.
Mohamed, O., Kewalramani, M., Ati, M., & Hawat, W. Al. (2021). Application of ANN for prediction of chloride penetration resistance and concrete compressive strength. Materialia, 17. doi:10.1016/j.mtla.2021.101123.
Yasin, A. A., Awwad, M. T., Malkawi, A. B., Maraqa, F. R., & Alomari, J. A. (2023). Optimization of Tuff Stones Content in Lightweight Concrete Using Artificial Neural Networks. Civil Engineering Journal (Iran), 9(11), 2823–2833. doi:10.28991/CEJ-2023-09-11-013.
Fan, D., Yu, R., Fu, S., Yue, L., Wu, C., Shui, Z., ... & Jiang, C. (2021). Precise design and characteristics prediction of Ultra-High-Performance Concrete (UHPC) based on artificial intelligence techniques. Cement and Concrete Composites, 122, 104171. doi:10.1016/j.cemconcomp.2021.104171.
Lin, C. J., & Wu, N. J. (2021). An ANN model for predicting the compressive strength of concrete. Applied Sciences (Switzerland), 11(9). doi:10.3390/app11093798.
Ramzi, S., Moradi, M. J., & Hajiloo, H. (2023). The Study of the Effects of Supplementary Cementitious Materials (SCMs) on Concrete Compressive Strength at High Temperatures Using Artificial Neural Network Model. Buildings, 13(5). doi:10.3390/buildings13051337.
Rahman, S. K., & Al-Ameri, R. (2021). Experimental investigation and artificial neural network-based prediction of bond strength in self-compacting geopolymer concrete reinforced with basalt FRP bars. Applied Sciences (Switzerland), 11(11), 4889. doi:10.3390/app11114889.
Yasin, A. A. (2024). Prediction of the Dynamic Properties of Concrete Using Artificial Neural Networks. Civil Engineering Journal (Iran), 10(1), 249–264. doi:10.28991/CEJ-2024-010-01-016.
Kazemi, R. (2023). Artificial intelligence techniques in advanced concrete technology: A comprehensive survey on 10 years research trend. Engineering Reports, 5(9). doi:10.1002/eng2.12676.
Saand, A., Keerio, M. A., Juj, R., Khoso, S., & Bangwar, D. K. (2017). Utilization of waste glass as partial replacement of fine aggregate in concrete. Engineering Science and Technology International Research Journal, 1(1), 28-32.
Drzymala, T., Zegardlo, B., & Tofilo, P. (2020). Properties of concrete containing recycled glass aggregates produced of exploded lighting materials. Materials, 13(1), 226. doi:10.3390/ma13010226.
Ali, E. E., & Al-Tersawy, S. H. (2012). Recycled glass as a partial replacement for fine aggregate in self-compacting concrete. Construction and Building Materials, 35, 785–791. doi:10.1016/j.conbuildmat.2012.04.117.
DOI: 10.28991/CEJ-2024-010-05-018
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Faroq Riyad Maraqa
This work is licensed under a Creative Commons Attribution 4.0 International License.