Investigating Barriers to the Adoption of Energy Management Practices for Sustainable Construction Projects: SEM and ANN Approaches

Yasir Alhammadi, Ahmed Farouk Kineber, Mohammad Alhusban


This research addresses the critical challenges hindering the integration of Energy Management Practices (EMPs) within the construction industry, impeding its progress toward sustainability. Recognizing the pivotal role of EMPs in fostering sustainable practices, this study aims to fill a notable research gap by conducting a meticulous survey involving 100 industry professionals. Through the application of Partial Least Squares Structural Equation Modeling (PLS-SEM) and Artificial Neural Network (ANN) analyses, this study provides a comprehensive exploration of the intricate barriers and their interrelated dynamics within the construction sector. The findings reveal significant financial obstacles, including higher initial costs and limited financing options, underscoring the need for interventions to alleviate financial constraints. Additionally, policy and regulatory challenges, such as limited government incentives and shifting energy management rules, are identified, highlighting the necessity for stable and supportive regulatory environments to foster EMP adoptions. This research provides unique insights into the barriers hindering EMP adoption within the construction sector. The implications of this study extend beyond EMP adoption, offering a foundation for advancing sustainable practices in the construction industry. The insights gained can inform both academic research and practical decision-making, contributing to the ongoing discourse on sustainability in construction.


Doi: 10.28991/CEJ-2024-010-04-015

Full Text: PDF


Barriers; Energy Management Practices (EMP); Construction Industry; Overall Sustainable Success (OSS); Partial Least Squares Structural Equation Modeling (PLS-SEM); Artificial Neural Network (ANN).


Jovanović, B., Filipović, J., & Bakić, V. (2015). Prioritization of manufacturing sectors in Serbia for energy management improvement - AHP method. Energy Conversion and Management, 98, 225–235. doi:10.1016/j.enconman.2015.03.107.

Cagno, E., Trianni, A., Abeelen, C., Worrell, E., & Miggiano, F. (2015). Barriers and drivers for energy efficiency: Different perspectives from an exploratory study in the Netherlands. Energy Conversion and Management, 102, 26–38. doi:10.1016/j.enconman.2015.04.018.

Shi, Q., Zuo, J., Huang, R., Huang, J., & Pullen, S. (2013). Identifying the critical factors for green construction - An empirical study in China. Habitat International, 40, 1–8. doi:10.1016/j.habitatint.2013.01.003.

Shen, L. Y., & Tam, V. W. Y. (2002). Implementation of environmental management in the Hong Kong construction industry. International Journal of Project Management, 20(7), 535–543. doi:10.1016/S0263-7863(01)00054-0.

Worrell, E., & Price, L. (2001). Policy scenarios for energy efficiency improvement in industry. Energy Policy, 29(14), 1223–1241. doi:10.1016/S0301-4215(01)00069-6.

Zhang, X., Shen, L., & Chan, S. Y. (2012). The diffusion of solar energy use in HK: What are the barriers? Energy Policy, 41, 241–249. doi:10.1016/j.enpol.2011.10.043.

Trianni, A., Cagno, E., & Worrell, E. (2013). Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs. Energy Policy, 61, 430–440. doi:10.1016/j.enpol.2013.06.034.

Schleich, J., Gassmann, X., Faure, C., & Meissner, T. (2016). Making the implicit explicit: A look inside the implicit discount rate. Energy Policy, 97, 321–331. doi:10.1016/j.enpol.2016.07.044.

Kangas, H. L., Lazarevic, D., & Kivimaa, P. (2018). Technical skills, disinterest and non-functional regulation: Barriers to building energy efficiency in Finland viewed by energy service companies. Energy Policy, 114, 63–76. doi:10.1016/j.enpol.2017.11.060.

Palm, J., & Thollander, P. (2010). An interdisciplinary perspective on industrial energy efficiency. Applied Energy, 87(10), 3255–3261. doi:10.1016/j.apenergy.2010.04.019.

Zhang, W., Wang, J., Liu, Y., Gao, G., Liang, S., & Ma, H. (2020). Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery. Applied Energy, 275(5988), 115401. doi:10.1016/j.apenergy.2020.115401.

Morel, J. C., Mesbah, A., Oggero, M., & Walker, P. (2001). Building houses with local materials: Means to drastically reduce the environmental impact of construction. Building and Environment, 36(10), 1119–1126. doi:10.1016/S0360-1323(00)00054-8.

Verbeeck, G., & Hens, H. (2010). Life cycle inventory of buildings: A calculation method. Building and Environment, 45(4), 1037–1041. doi:10.1016/j.buildenv.2009.10.012.

Karimpour, M., Belusko, M., Xing, K., & Bruno, F. (2014). Minimising the life cycle energy of buildings: Review and analysis. Building and Environment, 73, 106–114. doi:10.1016/j.buildenv.2013.11.019.

Li, Y., Song, H., Sang, P., Chen, P. H., & Liu, X. (2019). Review of Critical Success Factors (CSFs) for green building projects. Building and Environment, 158(May), 182–191. doi:10.1016/j.buildenv.2019.05.020.

Kang, J., Wang, L., Wang, Z., Zhang, J., & Dai, H. (2023). Improving the emergency management of energy infrastructure using scenario construction. International Journal of Hydrogen Energy, 48(23), 8731–8742. doi:10.1016/j.ijhydene.2022.11.208.

Pelenur, M. J., & Cruickshank, H. J. (2012). Closing the Energy Efficiency Gap: A study linking demographics with barriers to adopting energy efficiency measures in the home. Energy, 47(1), 348–357. doi:10.1016/

Lu, Y., Chang, R., Shabunko, V., & Lay Yee, A. T. (2019). The implementation of building-integrated photovoltaics in Singapore: drivers versus barriers. Energy, 168, 400–408. doi:10.1016/

Golpîra, H., & Khan, S. A. R. (2019). A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty. Energy, 170, 1113–1129. doi:10.1016/

Wang, Y., Li, K., Zeng, X., Gao, B., & Hong, J. (2022). Energy consumption characteristics based driving conditions construction and prediction for hybrid electric buses energy management. Energy, 245, 123189. doi:10.1016/

Zhang, W., Wang, J., Xu, Z., Shen, Y., & Gao, G. (2022). A generalized energy management framework for hybrid construction vehicles via model-based reinforcement learning. Energy, 260(5988), 124849. doi:10.1016/

Zhang, Q. (2004). Residential energy consumption in China and its comparison with Japan, Canada, and USA. Energy and Buildings, 36(12), 1217–1225. doi:10.1016/j.enbuild.2003.08.002.

Darko, A., Chan, A. P. C., Ameyaw, E. E., He, B. J., & Olanipekun, A. O. (2017). Examining issues influencing green building technologies adoption: The United States green building experts’ perspectives. Energy and Buildings, 144, 320–332. doi:10.1016/j.enbuild.2017.03.060.

Fernando, Y., & Hor, W. L. (2017). Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms. Resources, Conservation and Recycling, 126(July), 62–73. doi:10.1016/j.resconrec.2017.07.023.

Nazeer Ahamed, M. F., & Mariappan, M. (2023). A study to determine human-related errors at the level of top management, safety supervisors & workers during the implementation of safety practices in the construction industry. Safety Science, 162(February), 106081. doi:10.1016/j.ssci.2023.106081.

Ortiz, O., Castells, F., & Sonnemann, G. (2009). Sustainability in the construction industry: A review of recent developments based on LCA. Construction and Building Materials, 23(1), 28–39. doi:10.1016/j.conbuildmat.2007.11.012.

Brunke, J. C., Johansson, M., & Thollander, P. (2014). Empirical investigation of barriers and drivers to the adoption of energy conservation measures, energy management practices and energy services in the Swedish iron and steel industry. Journal of Cleaner Production, 84(1), 509–525. doi:10.1016/j.jclepro.2014.04.078.

Xue, X., Wu, H., Zhang, X., Dai, J., & Su, C. (2015). Measuring energy consumption efficiency of the construction industry: The case of China. Journal of Cleaner Production, 107, 509–515. doi:10.1016/j.jclepro.2014.04.082.

Persson, J., & Grönkvist, S. (2015). Drivers for and barriers to low-energy buildings in Sweden. Journal of Cleaner Production, 109, 296–304. doi:10.1016/j.jclepro.2014.09.094.

Chan, A. P. C., Darko, A., Olanipekun, A. O., & Ameyaw, E. E. (2018). Critical barriers to green building technologies adoption in developing countries: The case of Ghana. Journal of Cleaner Production, 172, 1067–1079. doi:10.1016/j.jclepro.2017.10.235.

Darko, A., Chan, A. P. C., Yang, Y., Shan, M., He, B. J., & Gou, Z. (2018). Influences of barriers, drivers, and promotion strategies on green building technologies adoption in developing countries: The Ghanaian case. Journal of Cleaner Production, 200, 687–703. doi:10.1016/j.jclepro.2018.07.318.

Zhang, Q., Oo, B. L., & Lim, B. T. H. (2019). Drivers, motivations, and barriers to the implementation of corporate social responsibility practices by construction enterprises: A review. Journal of Cleaner Production, 210, 563-584. doi:10.1016/j.jclepro.2018.11.050.

Martek, I., Hosseini, M. R., Shrestha, A., Edwards, D. J., & Durdyev, S. (2019). Barriers inhibiting the transition to sustainability within the Australian construction industry: An investigation of technical and social interactions. Journal of Cleaner Production, 211(2019), 281–292. doi:10.1016/j.jclepro.2018.11.166.

Maqbool, R., Arul, T., & Ashfaq, S. (2023). A mixed-methods study of sustainable construction practices in the UK. Journal of Cleaner Production, 430(August), 139087. doi:10.1016/j.jclepro.2023.139087.

Fu, C., Liu, Y. Q., & Shan, M. (2023). Drivers of low-carbon practices in green supply chain management in construction industry: An empirical study in China. Journal of Cleaner Production, 428(October), 139497. doi:10.1016/j.jclepro.2023.139497.

Pietrosemoli, L., & Rodríguez Monroy, C. (2013). The impact of sustainable construction and knowledge management on sustainability goals. A review of the Venezuelan renewable energy sector. Renewable and Sustainable Energy Reviews, 27, 683–691. doi:10.1016/j.rser.2013.07.056.

Karatayev, M., Hall, S., Kalyuzhnova, Y., & Clarke, M. L. (2016). Renewable energy technology uptake in Kazakhstan: Policy drivers and barriers in a transitional economy. Renewable and Sustainable Energy Reviews, 66, 120–136. doi:10.1016/j.rser.2016.07.057.

Hesselink, L. X. W., & Chappin, E. J. L. (2019). Adoption of energy efficient technologies by households – Barriers, policies and agent-based modelling studies. Renewable and Sustainable Energy Reviews, 99, 29–41. doi:10.1016/j.rser.2018.09.031.

Liu, H., Xing, X., Shang, W., & Li, T. (2021). NSGA-II Optimized Multiobjective Predictive Energy Management for Fuel Cell/Battery/Supercapacitor Hybrid Construction Vehicles. International Journal of Electrochemical Science, 16(4), 1–16. doi:10.20964/2021.04.24.

Umar, U. A., Shafiq, N., & Ahmad, F. A. (2021). A case study on the effective implementation of the reuse and recycling of construction & demolition waste management practices in Malaysia. Ain Shams Engineering Journal, 12(1), 283–291. doi:10.1016/j.asej.2020.07.005.

Davies, P. J., Emmitt, S., & Firth, S. K. (2015). Delivering improved initial embodied energy efficiency during construction. Sustainable Cities and Society, 14(1), 267–279. doi:10.1016/j.scs.2014.09.010.

Gupta, P., Anand, S., & Gupta, H. (2017). Developing a roadmap to overcome barriers to energy efficiency in buildings using best worst method. Sustainable Cities and Society, 31, 244–259. doi:10.1016/j.scs.2017.02.005.

Moglia, M., Cook, S., & McGregor, J. (2017). A review of Agent-Based Modelling of technology diffusion with special reference to residential energy efficiency. Sustainable Cities and Society, 31, 173–182. doi:10.1016/j.scs.2017.03.006.

Caputo, P., & Pasetti, G. (2017). Boosting the energy renovation rate of the private building stock in Italy: Policies and innovative GIS-based tools. Sustainable Cities and Society, 34(July), 394–404. doi:10.1016/j.scs.2017.07.002.

Azizi, E., Ahmadiahangar, R., Rosin, A., Martins, J., Lopes, R. A., Beheshti, M. T., & Bolouki, S. (2021). Residential energy flexibility characterization using non-intrusive load monitoring. Sustainable Cities and Society, 75(May), 103321. doi:10.1016/j.scs.2021.103321.

Li, X., Luo, J., Li, Y., Wang, W., Hong, W., Liu, M., Li, X., & Lv, Z. (2022). Application of effective water-energy management based on digital twins technology in sustainable cities construction. Sustainable Cities and Society, 87(October), 104241. doi:10.1016/j.scs.2022.104241.

Surroop, D., Raghoo, P., Wolf, F., Shah, K. U., & Jeetah, P. (2018). Energy access in Small Island Developing States: Status, barriers and policy measures. Environmental Development, 27, 58–69. doi:10.1016/j.envdev.2018.07.003.

Trinh, H. A., Truong, H. V. A., Do, T. C., Nguyen, M. H., Phan, V. Du, & Ahn, K. K. (2022). Optimization-based energy management strategies for hybrid construction machinery: A review. Energy Reports, 8, 6035–6057. doi:10.1016/j.egyr.2022.04.050.

Żuk, P. (2023). Soft power and the media management of energy transition: Analysis of the media narrative about the construction of nuclear power plants in Poland. Energy Reports, 9, 568–583. doi:10.1016/j.egyr.2022.11.192.

Paulu, A., Vitvarová, M., & Kočí, V. (2022). Quantifying the industry-wide symbiotic potential: LCA of construction and energy waste management in the Czech Republic. Sustainable Production and Consumption, 34, 55–64. doi:10.1016/j.spc.2022.08.033.

Olawumi, T. O., Chan, D. W. M., Wong, J. K. W., & Chan, A. P. C. (2018). Barriers to the integration of BIM and sustainability practices in construction projects: A Delphi survey of international experts. Journal of Building Engineering, 20, 60–71. doi:10.1016/j.jobe.2018.06.017.

Che Ibrahim, C. K. I., Manu, P., Belayutham, S., Mahamadu, A. M., & Antwi-Afari, M. F. (2022). Design for safety (DfS) practice in construction engineering and management research: A review of current trends and future directions. Journal of Building Engineering, 52, 104352. doi:10.1016/j.jobe.2022.104352.

Ikudayisi, A. E., Chan, A. P. C., Darko, A., & Adedeji, Y. M. D. (2023). Integrated practices in the Architecture, Engineering, and Construction industry: Current scope and pathway towards Industry 5.0. Journal of Building Engineering, 73(May), 106788. doi:10.1016/j.jobe.2023.106788.

Tafesse, S., Girma, Y. E., & Dessalegn, E. (2022). Analysis of the socio-economic and environmental impacts of construction waste and management practices. Heliyon, 8(3), 9169. doi:10.1016/j.heliyon.2022.e09169.

Jia, J. J., Xu, J. H., Fan, Y., & Ji, Q. (2018). Willingness to accept energy-saving measures and adoption barriers in the residential sector: An empirical analysis in Beijing, China. Renewable and Sustainable Energy Reviews, 95, 56–73. doi:10.1016/j.rser.2018.07.015.

Ali, A. H., El-Mahdy, G. M., Ibrahim, A. H., & Daoud, A. O. (2023). Towards the Adoption of Modular Construction in Residential Projects in Egypt: Benefits, Barriers, and Enablers. Towards a Sustainable Construction Industry: The Role of Innovation and Digitalisation, 1, 72–81. doi:10.1007/978-3-031-22434-8_8.

Hassan Ali, A., Farouk Kineber, A., Elshaboury, N., Arashpour, M., & Osama Daoud, A. (2023). Analysing multifaceted barriers to modular construction in sustainable building projects: a comprehensive evaluation using multi-criteria decision making. International Journal of Construction Management, 0(0), 1–17. doi:10.1080/15623599.2023.2299557.

Ali, A. H., Kineber, A. F., Elyamany, A., Hussein Ibrahim, A., & Daoud, A. O. (2023). Exploring stationary and major modular construction challenges in developing countries: a case study of Egypt. Journal of Engineering, Design and Technology, 1–30. doi:10.1108/JEDT-03-2023-0099.

Somachandra, W. D. I. V., Sylva, K. K. K., Bandara, C. S., & Dissanayake, P. B. R. (2023). Corporate social responsibility (CSR) practices in the construction industry of Sri Lanka. International Journal of Construction Management, 23(13), 2230-2238. doi:10.1080/15623599.2022.2049489.

Williams, K., & Dair, C. (2006). What is stopping sustainable building in England? Barriers experienced by stakeholders in delivering sustainable developments. Sustainable Development, 15(3), 135–147. Portico. doi:10.1002/sd.308.

Iqbal, M., Ma, J., Ahmad, N., Hussain, K., & Usmani, M. S. (2021). Promoting sustainable construction through energy-efficient technologies: an analysis of promotional strategies using interpretive structural modeling. International Journal of Environmental Science and Technology, 18(11), 3479–3502. doi:10.1007/s13762-020-03082-4.

Sarkar, A., Qian, L., Peau, A. K., & Shahriar, S. (2021). Modeling drivers for successful adoption of green business: an interpretive structural modeling approach. Environmental Science and Pollution Research, 28(1), 1077–1096. doi:10.1007/s11356-020-10490-z.

Shahzad, U. (2020). Environmental taxes, energy consumption, and environmental quality: Theoretical survey with policy implications. Environmental Science and Pollution Research, 27(20), 24848–24862. doi:10.1007/s11356-020-08349-4.

Van Gorp, J. C. (2004). Maximizing energy savings with energy management systems. Strategic Planning for Energy and the Environment, 24(3), 57–69. doi:10.1080/10485230409509667.

Li, B., Akintoye, A., Edwards, P. J., & Hardcastle, C. (2005). Critical success factors for PPP/PFI projects in the UK construction industry. Construction Management and Economics, 23(5), 459–471. doi:10.1080/01446190500041537.

Serpell, A., Kort, J., & Vera, S. (2013). Awareness, actions, drivers and barriers of sustainable construction in Chile. Technological and Economic Development of Economy, 19(2), 272–288. doi:10.3846/20294913.2013.798597.

Love, P. E. D., Niedzweicki, M., Bullen, P. A., & Edwards, D. J. (2012). Achieving the Green Building Council of Australia’s World Leadership Rating in an Office Building in Perth. Journal of Construction Engineering and Management, 138(5), 652–660. doi:10.1061/(asce)co.1943-7862.0000461.

Shan, M., Liu, W. Q., Hwang, B. G., & Lye, J. M. (2020). Critical success factors for small contractors to conduct green building construction projects in Singapore: identification and comparison with large contractors. Environmental Science and Pollution Research, 27(8), 8310–8322. doi:10.1007/s11356-019-06646-1.

Bruno, S., Dellino, G., La Scala, M., & Meloni, C. (2019). A microforecasting module for energy management in residential and tertiary buildings. Energies, 12(6). doi:10.3390/en12061006.

Laskurain, I., Ibarloza, A., Larrea, A., & Allur, E. (2017). Contribution to energy management of the main standards for environmental management systems: The case of ISO 14001 and EMAS. Energies, 10(11). doi:10.3390/en10111758.

Lipu, M. S. H. (2013). An Approach towards Sustainable Energy Performance by Green Building: A Review of Current Features, Benefits and Barriers. International Journal of Renewable and Sustainable Energy, 2(4), 180. doi:10.11648/j.ijrse.20130204.18.

Bhavsar, V., Sridharan, S. R., & Sudarsan, J. S. (2023). Barriers to circular economy practices during construction and demolition waste management in an emerging economy. Resources, Conservation and Recycling Advances, 20(November), 200198. doi:10.1016/j.rcradv.2023.200198.

Tan, T., Chen, K., Xue, F., & Lu, W. (2019). Barriers to Building Information Modeling (BIM) implementation in China's prefabricated construction: An interpretive structural modeling (ISM) approach. Journal of Cleaner Production, 219, 949-959. doi:10.1016/j.jclepro.2019.02.141.

Palinkas, L. A., Horwitz, S. M., Green, C. A., Wisdom, J. P., Duan, N., & Hoagwood, K. (2015). Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method Implementation Research. Administration and Policy in Mental Health and Mental Health Services Research, 42(5), 533–544. doi:10.1007/s10488-013-0528-y.

Wong, K. K. K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing bulletin, 24(1), 1-32.

Talafubieke, M., Mai, S., & Xialifuhan, N. (2021). Evaluation of the Virtual Economic Effect of Tourism Product Emotional Marketing Based on Virtual Reality. Frontiers in Psychology, 12. doi:10.3389/fpsyg.2021.759268.

Roberts, N., Thatcher, J. B., & Grover, V. (2010). Advancing operations management theory using exploratory structural equation modelling techniques. International Journal of Production Research, 48(15), 4329–4353. doi:10.1080/00207540902991682.

Singh, A. K., Kumar, V. R. P., Shoaib, M., Adebayo, T. S., & Irfan, M. (2023). A strategic roadmap to overcome blockchain technology barriers for sustainable construction: A deep learning-based dual-stage SEM-ANN approach. Technological Forecasting and Social Change, 194, 122716. doi:10.1016/j.techfore.2023.122716.

Kineber, A. F., Singh, A. K., Fazeli, A., Mohandes, S. R., Cheung, C., Arashpour, M., Ejohwomu, O., & Zayed, T. (2023). Modelling the relationship between digital twins implementation barriers and sustainability pillars: Insights from building and construction sector. Sustainable Cities and Society, 99, 104930. doi:10.1016/j.scs.2023.104930.

Ali, A. H., Kineber, A. F., Elyamany, A., Ibrahim, A. H., & Daoud, A. O. (2023). Identifying and assessing modular construction implementation barriers in developing nations for sustainable building development. Sustainable Development, 31(5), 3346–3364. doi:10.1002/sd.2589.

Ali, A. H., Elyamany, A., Ibrahim, A. H., Kineber, A. F., & Daoud, A. O. (2023). Modelling the relationship between modular construction adoption and critical success factors for residential projects in developing countries. International Journal of Construction Management, 1–12. doi:10.1080/15623599.2023.2185940.

Kineber, A. F., Oke, A., Hamed, M. M., Alyanbaawi, A., Elmansoury, A., & Daoud, A. O. (2023). Decision Making Model for Identifying the Cyber Technology Implementation Benefits for Sustainable Residential Building: A Mathematical PLS-SEM Approach. Sustainability (Switzerland), 15(3), 2458. doi:10.3390/su15032458.

Bello, A. O., Eje, D. O., Idris, A., Semiu, M. A., & Khan, A. A. (2023). Drivers for the implementation of modular construction systems in the AEC industry of developing countries. Journal of Engineering, Design and Technology, 2018. doi:10.1108/JEDT-11-2022-0571.

Nureen, N., Xin, Y., Irfan, M., & Fahad, S. (2023). Going green: how do green supply chain management and green training influence firm performance? Evidence from a developing country. Environmental Science and Pollution Research, 30(20), 57448–57459. doi:10.1007/s11356-023-26609-x.

Waqar, A., Othman, I., & Pomares, J. C. (2023). Impact of 3D Printing on the Overall Project Success of Residential Construction Projects Using Structural Equation Modelling. International Journal of Environmental Research and Public Health, 20(5), 3800. doi:10.3390/ijerph20053800.

Khan, S. A., Mubarik, M. S., Kusi-Sarpong, S., Gupta, H., Zaman, S. I., & Mubarik, M. (2022). Blockchain technologies as enablers of supply chain mapping for sustainable supply chains. Business Strategy and the Environment, 31(8), 3742–3756. doi:10.1002/bse.3029.

Oke, A. E., Farouk Kineber, A., Abdel-Tawab, M., Abubakar, A. S., Albukhari, I., & Kingsley, C. (2023). Barriers to the implementation of cloud computing for sustainable construction in a developing economy. International Journal of Building Pathology and Adaptation, 41(5), 988–1013. doi:10.1108/IJBPA-07-2021-0098.

Rajbhandari, S., Devkota, N., Khanal, G., Mahato, S., & Paudel, U. R. (2022). Assessing the industrial readiness for adoption of industry 4.0 in Nepal: A structural equation model analysis. Heliyon, 8(2), 8919. doi:10.1016/j.heliyon.2022.e08919.

Garg, R. K. (2021). Structural equation modeling of E-supplier selection criteria in mechanical manufacturing industries. Journal of Cleaner Production, 311(May), 127597. doi:10.1016/j.jclepro.2021.127597.

Teng, J., Mu, X., Wang, W., Xu, C., & Liu, W. (2019). Strategies for sustainable development of green buildings. Sustainable Cities and Society, 44, 215–226. doi:10.1016/j.scs.2018.09.038.

Gunduz, M., Birgonul, M. T., & Ozdemir, M. (2017). Fuzzy Structural Equation Model to Assess Construction Site Safety Performance. Journal of Construction Engineering and Management, 143(4), 4016112. doi:10.1061/(asce)co.1943-7862.0001259.

Podsakoff, P. M., & Organ, D. W. (1986). Self-Reports in Organizational Research: Problems and Prospects. Journal of Management, 12(4), 531–544. doi:10.1177/014920638601200408.

MacKenzie, S. B., & Podsakoff, P. M. (2012). Common Method Bias in Marketing: Causes, Mechanisms, and Procedural Remedies. Journal of Retailing, 88(4), 542–555. doi:10.1016/j.jretai.2012.08.001.

Durdyev, S., Ismail, S., Ihtiyar, A., Abu Bakar, N. F. S., & Darko, A. (2018). A partial least squares structural equation modeling (PLS-SEM) of barriers to sustainable construction in Malaysia. Journal of Cleaner Production, 204, 564–572. doi:10.1016/j.jclepro.2018.08.304.

Munianday, P., Radzi, A. R., Esa, M., & Rahman, R. A. (2022). Optimal Strategies for Improving Organizational BIM Capabilities: PLS-SEM Approach. Journal of Management in Engineering, 38(3). doi:10.1061/(asce)me.1943-5479.0001038.

Ali, A. H., Kineber, A. F., Elyamany, A., Ibrahim, A. H., & Daoud, A. O. (2023). Modelling the role of modular construction’s critical success factors in the overall sustainable success of Egyptian housing projects. Journal of Building Engineering, 71(April), 1–18,. doi:10.1016/j.jobe.2023.106467.

Abdel-Tawab, M., Kineber, A. F., Chileshe, N., Abanda, H., Ali, A. H., & Almukhtar, A. (2023). Building Information Modelling Implementation Model for Sustainable Building Projects in Developing Countries: A PLS-SEM Approach. Sustainability (Switzerland), 15(12), 1–21. doi:10.3390/su15129242.

Awang, Z., Wan Afthanorhan, W. M. A., & Asri, M. A. M. (2015). Parametric and Non-Parametric Approach in Structural Equation Modeling (SEM): The Application of Bootstrapping. Modern Applied Science, 9(9), 58–67. doi:10.5539/mas.v9n9p58.

Li, C., Zhang, Y., & Xu, Y. (2022). Factors Influencing the Adoption of Blockchain in the Construction Industry: A Hybrid Approach Using PLS-SEM and fsQCA. Buildings, 12(9). doi:10.3390/buildings12091349.

Ashaari, M. A., Singh, K. S. D., Abbasi, G. A., Amran, A., & Liebana-Cabanillas, F. J. (2021). Big data analytics capability for improved performance of higher education institutions in the Era of IR 4.0: A multi-analytical SEM & ANN perspective. Technological Forecasting and Social Change, 173, 121119. doi:10.1016/j.techfore.2021.121119.

Lo, P. S., Dwivedi, Y. K., Wei-Han Tan, G., Ooi, K. B., Cheng-Xi Aw, E., & Metri, B. (2022). Why do consumers buy impulsively during live streaming? A deep learning-based dual-stage SEM-ANN analysis. Journal of Business Research, 147, 325–337. doi:10.1016/j.jbusres.2022.04.013.

Wong, L. W., Leong, L. Y., Hew, J. J., Tan, G. W. H., & Ooi, K. B. (2020). Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among Malaysian SMEs. International Journal of Information Management, 52, 101997. doi:10.1016/j.ijinfomgt.2019.08.005.

Leong, L. Y., Hew, T. S., Ooi, K. B., & Wei, J. (2020). Predicting mobile wallet resistance: A two-staged structural equation modeling-artificial neural network approach. International Journal of Information Management, 51(November), 102047. doi:10.1016/j.ijinfomgt.2019.102047.

Nicolas, C., Kim, J., & Chi, S. (2020). Quantifying the dynamic effects of smart city development enablers using structural equation modeling. Sustainable Cities and Society, 53, 101916. doi:10.1016/j.scs.2019.101916.

Tawalare, A., Laishram, B., & Thottathil, F. (2020). Relational Partnership in Public Construction Organizations: Front-Line Employee Perspective. Journal of Construction Engineering and Management, 146(1), 04019086. doi:10.1061/(asce)co.1943-7862.0001723.

Kar, S., & Jha, K. N. (2021). Exploring the Critical Barriers to and Enablers of Sustainable Material Management Practices in the Construction Industry. Journal of Construction Engineering and Management, 147(9), 04021102. doi:10.1061/(asce)co.1943-7862.0002125.

Chen, Y., Dib, H., Cox, R. F., Shaurette, M., & Vorvoreanu, M. (2016). Structural Equation Model of Building Information Modeling Maturity. Journal of Construction Engineering and Management, 142(9), 4016032. doi:10.1061/(asce)co.1943-7862.0001147.

Kursunoglu, N., Onder, S., & Onder, M. (2022). The Evaluation of Personal Protective Equipment Usage Habit of Mining Employees Using Structural Equation Modeling. Safety and Health at Work, 13(2), 180–186. doi:10.1016/

Nwaogu, J. M., Chan, A. P. C., & Naslund, J. A. (2022). Measures to Improve the Mental Health of Construction Personnel Based on Expert Opinions. Journal of Management in Engineering, 38(4), 1–17. doi:10.1061/(asce)me.1943-5479.0001045.

Cruz-Jesus, F., Pinheiro, A., & Oliveira, T. (2019). Understanding CRM adoption stages: empirical analysis building on the TOE framework. Computers in Industry, 109, 1–13. doi:10.1016/j.compind.2019.03.007.

Rouhanizadeh, B., & Kermanshachi, S. (2022). Investigation of the Causal Relationships among Different Barrier Categories to Timely Posthurricane Recovery. Natural Hazards Review, 23(3). doi:10.1061/(asce)nh.1527-6996.0000565.

Arpaci, I., Karatas, K., Kusci, I., & Al-Emran, M. (2022). Understanding the social sustainability of the Metaverse by integrating UTAUT2 and big five personality traits: A hybrid SEM-ANN approach. Technology in Society, 71, 102120. doi:10.1016/j.techsoc.2022.102120.

Wang, G., Tan, G. W. H., Yuan, Y., Ooi, K. B., & Dwivedi, Y. K. (2022). Revisiting TAM2 in behavioral targeting advertising: A deep learning-based dual-stage SEM-ANN analysis. Technological Forecasting and Social Change, 175, 121345. doi:10.1016/j.techfore.2021.121345.

Prasad Das, C., Kumar Swain, B., Goswami, S., & Das, M. (2021). Prediction of traffic noise induced annoyance: A two-staged SEM-Artificial Neural Network approach. Transportation Research Part D: Transport and Environment, 100(September), 103055. doi:10.1016/j.trd.2021.103055.

Loh, X. M., Lee, V. H., & Leong, L. Y. (2022). Mobile-lizing continuance intention with the mobile expectation-confirmation model: An SEM-ANN-NCA approach. Expert Systems with Applications, 205, 117659. doi:10.1016/j.eswa.2022.117659.

Elseufy, S. M., Hussein, A., & Badawy, M. (2022). A hybrid SEM-ANN model for predicting overall rework impact on the performance of bridge construction projects. Structures, 46(June), 713–724. doi:10.1016/j.istruc.2022.10.100.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-015


  • There are currently no refbacks.

Copyright (c) 2024 Yasir Alhammadi, Ahmed Kineber, Mohammad Alhusban

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.