Utilizing Remote Sensing and GIS Techniques for Flood Hazard Mapping and Risk Assessment

Aslam A. Al-Omari, Nawras N. Shatnawi, Nadim I. Shbeeb, Denis Istrati, Nikos D. Lagaros, Khairedin M. Abdalla

Abstract


In this paper, a comprehensive flood hazard map for the vicinity of King Talal Dam in Jordan, utilizing advanced remote sensing (RS) and GIS methodologies, is developed. Key geographical and environmental factors, encompassing terrain slope, elevation, aspect, proximity to water streams, drainage density, and land use/land cover, are integrated to highlight areas with increased flood risk. This study, by employing a novel theoretical approach, harnesses the synergistic capabilities of RS and GIS to collect and analyze geospatial data. The Analytic Hierarchy Process (AHP) is applied to assign weights to various flood-conditioning factors, quantifying their relative importance in flood risk assessment. Through the weighted sum overlay technique, the aforementioned factors are integrated to categorize flood risk levels from very low to very high. This study successfully maps flood hazards, identifying areas near main water channels, ravines, and lower-elevation areas prone to flooding. This research provides a robust framework for flood risk assessment, contributing valuable knowledge to the fields of environmental management and disaster mitigation. It underscores the importance of continuous monitoring and updating of flood hazard maps to accommodate changing land use, climate, and hydrological conditions. The innovative application offers crucial insights for urban planners and policymakers, emphasizing the need for proactive strategies in flood-prone areas and serving as a model for similar geographical regions.

 

Doi: 10.28991/CEJ-2024-010-05-05

Full Text: PDF


Keywords


Flood Hazard; Flood Risk; AHP; GIS; Remote Sensing; DEM; Weighted Sum Overlay.

References


Jerome Glago, F. (2021). Flood Disaster Hazards; Causes, Impacts and Management: A State-of-the-Art Review. Natural Hazards - Impacts, Adjustments and Resilience. doi:10.5772/intechopen.95048.

Douben, K.-J. (2006). Characteristics of river floods and flooding: a global overview, 1985–2003. Irrigation and Drainage, 55(S1), S9–S21. doi:10.1002/ird.239.

Waylen, P., & Woo, M. -K. (1982). Prediction of annual floods generated by mixed processes. Water Resources Research, 18(4), 1283–1286. doi:10.1029/WR018i004p01283.

Acreman, M. C. (1985). Predicting the mean annual flood from basin characteristics in Scotland. Hydrological Sciences Journal, 30(1), 37–49. doi:10.1080/02626668509490970.

Horritt, M. S., & Bates, P. D. (2002). Evaluation of 1D and 2D numerical models for predicting river flood inundation. Journal of Hydrology, 268(1–4), 87–99. doi:10.1016/S0022-1694(02)00121-X.

Emerton, R. E., Stephens, E. M., Pappenberger, F., Pagano, T. C., Weerts, A. H., Wood, A. W., Salamon, P., Brown, J. D., Hjerdt, N., Donnelly, C., Baugh, C. A., & Cloke, H. L. (2016). Continental and global scale flood forecasting systems. Wiley Interdisciplinary Reviews: Water, 3(3), 391–418. doi:10.1002/wat2.1137.

Posthumus, H., Hewett, C. J. M., Morris, J., & Quinn, P. F. (2008). Agricultural land use and flood risk management: Engaging with stakeholders in North Yorkshire. Agricultural Water Management, 95(7), 787–798. doi:10.1016/j.agwat.2008.02.001.

Banerjee, L. (2010). Effects of flood on agricultural productivity in Bangladesh. Oxford Development Studies, 38(3), 339–356. doi:10.1080/13600818.2010.505681.

Thomaz, S. M., Bini, L. M., & Bozelli, R. L. (2007). Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia, 579(1), 1–13. doi:10.1007/s10750-006-0285-y.

Le, T. V. H., Nguyen, H. N., Wolanski, E., Tran, T. C., & Haruyama, S. (2007). The combined impact on the flooding in Vietnam’s Mekong River delta of local man-made structures, sea level rise, and dams upstream in the river catchment. Estuarine, Coastal and Shelf Science, 71(1–2), 110–116. doi:10.1016/j.ecss.2006.08.021.

Du, W., Fitzgerald, G. J., Clark, M., & Hou, X. Y. (2010). Health impacts of floods. Prehospital and Disaster Medicine, 25(3), 265–272. doi:10.1017/S1049023X00008141.

Rojas, R., Feyen, L., & Watkiss, P. (2013). Climate change and river floods in the European Union: Socio-economic consequences and the costs and benefits of adaptation. Global Environmental Change, 23(6), 1737–1751. doi:10.1016/j.gloenvcha.2013.08.006.

Kundzewicz, Z. W., Lugeri, N., Dankers, R., Hirabayashi, Y., Döll, P., Pińskwar, I., Dysarz, T., Hochrainer, S., & Matczak, P. (2010). Assessing river flood risk and adaptation in Europe-review of projections for the future. Mitigation and Adaptation Strategies for Global Change, 15(7), 641–656. doi:10.1007/s11027-010-9213-6.

Laudan, J., Rözer, V., Sieg, T., Vogel, K., & Thieken, A. H. (2017). Damage assessment in Braunsbach 2016: Data collection and analysis for an improved understanding of damaging processes during flash floods. Natural Hazards and Earth System Sciences, 17(12), 2163–2179. doi:10.5194/nhess-17-2163-2017.

Mahmood, S., Khan, A. ul H., & Ullah, S. (2016). Assessment of 2010 flash flood causes and associated damages in Dir Valley, Khyber Pakhtunkhwa Pakistan. International Journal of Disaster Risk Reduction, 16, 215–223. doi:10.1016/j.ijdrr.2016.02.009.

Istrati, D., & Hasanpour, A. (2022). Advanced numerical modelling of large debris impact on piers during extreme flood events. 7th IAHR Europe Congress, Athens, Greece.

Borga, M., Stoffel, M., Marchi, L., Marra, F., & Jakob, M. (2014). Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. Journal of Hydrology, 518, 194–205. doi:10.1016/j.jhydrol.2014.05.022.

Buslima, F. S., Omar, R. C., Jamaluddin, T. A., & Taha, H. (2018). Flood and flash flood geo-hazards in Malaysia. International Journal of Engineering and Technology (UAE), 7(4), 760–764. doi:10.14419/ijet.v7i4.35.23103.

Ozturk, U., Wendi, D., Crisologo, I., Riemer, A., Agarwal, A., Vogel, K., López-Tarazón, J. A., & Korup, O. (2018). Rare flash floods and debris flows in southern Germany. Science of the Total Environment, 626, 941–952. doi:10.1016/j.scitotenv.2018.01.172.

Hou, J., Li, B., Tong, Y., Ma, L., Ball, J., Luo, H., Liang, Q., & Xia, J. (2020). Cause analysis for a new type of devastating flash flood. Hydrology Research, 51(1), 1–16. doi:10.2166/nh.2019.091.

Shatnawi, N. (2024). Mapping Floods during Cloudy Weather Using Radar Satellite Images. Jordan Journal of Civil Engineering, 18(1), 32–41. doi:10.14525/JJCE.v18i1.03.

Kreibich, H., Piroth, K., Seifert, I., Maiwald, H., Kunert, U., Schwarz, J., Merz, B., & Thieken, A. H. (2009). Is flow velocity a significant parameter in flood damage modelling? Natural Hazards and Earth System Science, 9(5), 1679–1692. doi:10.5194/nhess-9-1679-2009.

Kron, W. (2005). Flood Risk= Hazard.Values.Vulnerability. Water international, 30(1), 58-68. doi:10.1080/02508060508691837.

Wang, Y., Li, Z., Tang, Z., & Zeng, G. (2011). A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China. Water Resources Management, 25(13), 3465–3484. doi:10.1007/s11269-011-9866-2.

Dewan, A. M. (2013). Floods in a megacity: Geospatial techniques in assessing hazards, risk and vulnerability. Floods in a Megacity: Geospatial Techniques in Assessing Hazards, Risk and Vulnerability, Springer, Dordrecht, Netherlands. doi:10.1007/978-94-007-5875-9.

Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111(1–2), 79–87. doi:10.1016/j.geomorph.2008.03.015.

Siddayao, G. P., Valdez, S. E., & Fernandez, P. L. (2014). Analytic Hierarchy Process (AHP) in Spatial Modeling for Floodplain Risk Assessment. International Journal of Machine Learning and Computing, 4(5), 450–457. doi:10.7763/ijmlc.2014.v4.453.

Dano, U. L., Balogun, A. L., Matori, A. N., Yusouf, K. W., Abubakar, I. R., Mohamed, M. A. S., Aina, Y. A., & Pradhan, B. (2019). Flood susceptibility mapping using GIS-based analytic network process: A case study of Perlis, Malaysia. Water, 11(3), 615. doi:10.3390/w11030615.

Waseem, M., Ahmad, S., Ahmad, I., Wahab, H., & Leta, M. K. (2023). Urban flood risk assessment using AHP and geospatial techniques in swat Pakistan. SN Applied Sciences, 5(8), 215. doi:10.1007/s42452-023-05445-1.

Antzoulatos, G., Kouloglou, I. O., Bakratsas, M., Moumtzidou, A., Gialampoukidis, I., Karakostas, A., Lombardo, F., Fiorin, R., Norbiato, D., Ferri, M., Symeonidis, A., Vrochidis, S., & Kompatsiaris, I. (2022). Flood Hazard and Risk Mapping by Applying an Explainable Machine Learning Framework Using Satellite Imagery and GIS Data. Sustainability (Switzerland), 14(6), 3251. doi:10.3390/su14063251.

Psomiadis, E., Diakakis, M., & Soulis, K. X. (2020). Combining SAR and optical earth observation with hydraulic simulation for flood mapping and impact assessment. Remote Sensing, 12(23), 1–29. doi:10.3390/rs12233980.

Kettner, A. J., Schumann, G. J. P., & Brakenridge, G. R. (2020). Applying Remote Sensing to Support Flood Risk Assessment and Relief Agencies: A Global to Local Approach. International Geoscience and Remote Sensing Symposium (IGARSS), 3239–3242. doi:10.1109/IGARSS39084.2020.9323351.

Alarifi, S. S., Abdelkareem, M., Abdalla, F., & Alotaibi, M. (2022). Flash Flood Hazard Mapping Using Remote Sensing and GIS Techniques in Southwestern Saudi Arabia. Sustainability, 14(21), 14145. doi:10.3390/su142114145.

M Amen, A. R., Mustafa, A., Kareem, D. A., Hameed, H. M., Mirza, A. A., Szydłowski, M., & Bala, B. K. (2023). Mapping of Flood-Prone Areas Utilizing GIS Techniques and Remote Sensing: A Case Study of Duhok, Kurdistan Region of Iraq. Remote Sensing, 15(4), 1102. doi:10.3390/rs15041102.

Madi, H., Bedjaoui, A., Elhoussaoui, A., Elbakai, L. O., & Bounaama, A. (2023). Flood Vulnerability Mapping and Risk Assessment Using Hydraulic Modeling and GIS in Tamanrasset Valley Watershed, Algeria. Journal of Ecological Engineering, 24(7), 35–48. doi:10.12911/22998993/163252.

Kumar, N., & Jha, R. (2023). GIS-based Flood Risk Mapping: The Case Study of Kosi River Basin, Bihar, India. Engineering, Technology and Applied Science Research, 13(1), 9830–9836. doi:10.48084/etasr.5377.

Chakrabortty, R., Pal, S. C., Ruidas, D., Roy, P., Saha, A., & Chowdhuri, I. (2023). Living with Floods Using State-of-the-Art and Geospatial Techniques: Flood Mitigation Alternatives, Management Measures, and Policy Recommendations. Water, 15(3), 558. doi:10.3390/w15030558.

Chan, S. W., Abid, S. K., Sulaiman, N., Nazir, U., & Azam, K. (2022). A systematic review of the flood vulnerability using geographic information system. Heliyon, 8(3), 9075. doi:10.1016/j.heliyon.2022.e09075.

Efraimidou, E., & Spiliotis, M. (2024). A GIS-Based Flood Risk Assessment Using the Decision-Making Trial and Evaluation Laboratory Approach at a Regional Scale. Environmental Processes, 11(1), 9. doi:10.1007/s40710-024-00683-w.

Department of Statistics (DOS). (2019). Estimated Population of the Kingdom by Urban and Rural, at End-year 2010. Jordan Statistical Yearbook, Department of Statistics (DOS), Amman, Jordan.

Makhamreh, Z. (2018). Derivation of vegetation density and land-use type pattern in mountain regions of Jordan using multi-seasonal SPOT images. Environmental Earth Sciences, 77(10), 384. doi:10.1007/s12665-018-7534-z.

JMD. (2018). Jordan Meteorological Department (JMD). Amman, Jordan. Available online: http://jmd.gov.jo (accessed on April 2024).

Al-husban, Y. (2019). Urban expansion and shrinkage of vegetation cover in Al-Balqa Governorate, the Hashemite Kingdom of Jordan. Environmental Earth Sciences, 78(21), 620. doi:10.1007/s12665-019-8635-z.

Al-Bilbisi, H. H. (2012). A Two-Decade Land Use and Cover Change Detection and Land Degradation Monitoring in Central Jordan Using Satellite Images. Jordan Journal of Social Sciences, 5(1), 128–142.

Qtiashat, D., Makhmreh, Z., Taleb, H. A., & Khlaifat, A. (2018). Urban Land Use Pattern and Road Network Characteristics Using GIS in Al Salt City, Jordan. Modern Applied Science, 12(4), 128. doi:10.5539/mas.v12n4p128.

Withanage, N. S., Dayawansa, N. D. K., & De Silva, R. P. (2015). Morphometric analysis of the Gal Oya River basin using spatial data derived from GIS. Tropical Agricultural Research, 26(1), 175. doi:10.4038/tar.v26i1.8082.

Rudraiah, M., Govindaiah, S., & Vittala, S. S. (2008). Morphometry using remote sensing and GIS techniques in the sub-basins of Kagna river basin, Gulburga district, Karnataka, India. Journal of the Indian Society of Remote Sensing, 36(4), 351–360. doi:10.1007/s12524-008-0035-x.

Vojtek, M., Vojteková, J., Costache, R., Pham, Q. B., Lee, S., Arshad, A., Sahoo, S., Linh, N. T. T., & Anh, D. T. (2021). Comparison of multi-criteria-analytical hierarchy process and machine learning-boosted tree models for regional flood susceptibility mapping: a case study from Slovakia. Geomatics, Natural Hazards and Risk, 12(1), 1153–1180. doi:10.1080/19475705.2021.1912835.

Costache, R., Arabameri, A., Elkhrachy, I., Ghorbanzadeh, O., & Pham, Q. B. (2021). Detection of areas prone to flood risk using state-of-the-art machine learning models. Geomatics, Natural Hazards and Risk, 12(1), 1488–1507. doi:10.1080/19475705.2021.1920480.

Ulloa-Torrealba, Y., Stahlmann, R., Wegmann, M., & Koellner, T. (2020). Over 150 Years of Change: Object-Oriented Analysis of Historical Land Cover in the Main River Catchment, Bavaria/Germany. Remote Sensing, 12(24), 4048. doi:10.3390/rs12244048.

Magesh, N. S., Jitheshlal, K. V., Chandrasekar, N., & Jini, K. V. (2013). Geographical information system-based morphometric analysis of Bharathapuzha river basin, Kerala, India. Applied Water Science, 3(2), 467–477. doi:10.1007/s13201-013-0095-0.

Strahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel networks. Handbook of applied hydrology, McGraw-Hill Education, New York, United states.

Horton, R. E. (1945). Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach to Quantitative Morphology. Geological Society of America Bulletin, 56(3), 275. doi:10.1130/0016-7606(1945)56[275:edosat]2.0.co;2.

Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bulletin of the Geological Society of America, 67(5), 597–646. doi:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2.

Shiva Shankar, V., Purti, N., Mandal, K. K., Satyakeerthy, T., & Jacob, S. (2022). A Geospatial Approach to Demarcate Flood Susceptible Zones of Rangat Watershed, Middle Andaman, India. Journal of Scientific Research, 66(03), 49–56. doi:10.37398/jsr.2022.660307.

Obi Reddy, G. P., Maji, A. K., & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India - A remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1), 1–16. doi:10.1016/j.jag.2004.06.003.

Saaty, T. L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill, New York, United states.

Al-Taani, A., Al-husban, Y., & Ayan, A. (2023). Assessment of potential flash flood hazards. Concerning land use/land cover in Aqaba Governorate, Jordan, using a multi-criteria technique. Egyptian Journal of Remote Sensing and Space Science, 26(1), 17–24. doi:10.1016/j.ejrs.2022.12.007.

Feng, B., Zhang, Y., & Bourke, R. (2021). Urbanization impacts on flood risks based on urban growth data and coupled flood models. Natural Hazards, 106(1), 613–627. doi:10.1007/s11069-020-04480-0.

AlMahasneh, L., Abuhamoor, D., Al Sane, K., & Haddad, N. J. (2023). Assessment and mapping of flash flood hazard severity in Jordan. International Journal of River Basin Management, 21(2), 311–325. doi:10.1080/15715124.2021.1981354.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-05-05

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Aslam A. Al-Omari, Nawras N. Shatnawi, Nadim I. Shbeeb, Denis Istrati, Nikos D. Lagaros, Khairedin M. Abdalla

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message