Local Scour around Different-Shaped Bridge Piers

Siva K. Reddy, Sruthi T. Kalathil, Venu Chandra

Abstract


Local scour around piers is the major cause of bridge failures, and its estimation is critical for safe design. The present study aims to identify a modified pier shape that can reduce local scour compared to a circular pier. In addition, M5 models are developed for maximum scour depth prediction and compared with the existing equations available in the literature. Thus, the effect of pier shape and alignment on local scour is experimentally investigated using three pier models with the same cross-sectional area placed in isolated and tandem arrangements under clear-water conditions. These are circular (M1) and two modified pier shapes (M2 and M3), where M2 is a combination of semi-circle and triangle oriented either way (M2a and M2b), and M3 is a further modification to M2a with a small protrusion on the semi-circular end. The results showed that the local scour depth for aligned (skew angle, α = 0°) M2a, M2b, and M3 piers is reduced by 23.5%, 50%, and 55%, respectively, compared to the M1 pier but not if α > 0°. In tandem arrangements, the least scour depths observed around M1 and M2a at X = 1.0D (X is clear-spacing between piers and D is pier diameter), and M3 and M1 at X = 1.75D placed as front and rear pier, respectively. It is observed that the developed M5 models are more accurate compared to the existing equations. Flow intensity (V/Vc) and αhave more influence on the scour depth prediction around tandem and isolated piers, respectively.

 

Doi: 10.28991/CEJ-2024-010-06-019

Full Text: PDF


Keywords


Scour Control; Pier Shape; Skewed Piers; Tandem Piers; Scour Depth Prediction; M5 Model.

References


Choudhury, J. R., & Hasnat, A. (2015, August). Bridge collapses around the world: Causes and mechanisms. IABSE-JSCE joint conference on advances in bridge engineering-III, 21-22 August, 2015, Dhaka, Bangladesh.

Najafzadeh, M., & Oliveto, G. (2021). More reliable predictions of clear-water scour depth at pile groups by robust artificial intelligence techniques while preserving physical consistency. Soft Computing, 25, 5723-5746. doi:10.1007/s00500-020-05567-3.

Kashmoola, A., Ismael, A., & Suleiman, S. (2019). Comparison of Bridge Piers Shapes According to Local Scour Countermeasures. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 6, 171–180.

Oliveto, G., & Hager, W. H. (2005). Further Results to Time-Dependent Local Scour at Bridge Elements. Journal of Hydraulic Engineering, 131(2), 97–105. doi:10.1061/(asce)0733-9429(2005)131:2(97).

Pandey, M., Oliveto, G., Pu, J. H., Sharma, P. K., & Ojha, C. S. P. (2020). Pier scour prediction in non-uniform gravel beds. Water (Switzerland), 12(6), 1696. doi:10.3390/W12061696.

Zarrati, A. R., Gholami, H., & Mashahir, M. B. (2004). Application of collar to control scouring around rectangular bridge piers. Journal of Hydraulic Research, 42(1), 97-103. doi:10.1080/00221686.2004.9641188.

Al-Shukur, A. H. K., & Obeid, Z. H. (2016). Experimental study of bridge pier shape to minimize local scour. International Journal of Civil Engineering and Technology, 7(1), 162-171.

Etemad-Shahidi, A., Bonakdar, L., & Jeng, D. S. (2015). Estimation of scour depth around circular piers: Applications of model tree. Journal of Hydroinformatics, 17(2), 226–238. doi:10.2166/hydro.2014.151.

Fael, C., Lança, R., & Cardoso, A. (2016). Effect of pier shape and pier alignment on the equilibrium scour depth at single piers. International Journal of Sediment Research, 31(3), 244–250. doi:10.1016/j.ijsrc.2016.04.001.

Habib, I. A., Mohtar, W. H. M. W., Elsaiad, A., & El-Shafie, A. (2018). Nose-angle bridge piers as alternative countermeasures for local scour reduction. Baltic Journal of Road and Bridge Engineering, 13(2), 110–120. doi:10.7250/bjrbe.2018-13.405.

Qi, M., Li, J., & Chen, Q. (2016). Comparison of existing equations for local scour at bridge piers: parameter influence and validation. Natural Hazards, 82(3), 2089–2105. doi:10.1007/s11069-016-2287-z.

Sabbagh-Yazdi, S.-R., & Bavandpour, M. (2021). Introducing ring collars and effective spiral threading elevation for cylindrical pier scour control. Marine Georesources & Geotechnology, 40(6), 639–654. doi:10.1080/1064119x.2021.1922555.

Abdulkathum, S., Al-Shaikhli, H. I., Al-Abody, A. A., & Hashim, T. M. (2023). Statistical Analysis Approaches in Scour Depth of Bridge Piers. Civil Engineering Journal (Iran), 9(1), 143–153. doi:10.28991/CEJ-2023-09-01-011.

Baranwal, A., Shankar Das, B., & Setia, B. (2023). A comparative study of scour around various shaped bridge pier. Engineering Research Express, 5(1), 15052. doi:10.1088/2631-8695/acbfa1.

Dargahi, B. (1990). Controlling Mechanism of Local Scouring. Journal of Hydraulic Engineering, 116(10), 1197–1214. doi:10.1061/(asce)0733-9429(1990)116:10(1197).

Huda, M. B., Lone, M. A., Rather, N. A., & Chadee, A. A. (2023). Scouring around different shapes of bridge pier. Water Practice and Technology, 18(7), 1608–1616. doi:10.2166/wpt.2023.108.

Chiew, Y. (1992). Scour Protection at Bridge Piers. Journal of Hydraulic Engineering, 118(9), 1260–1269. doi:10.1061/(asce)0733-9429(1992)118:9(1260).

Li, J., & Tao, J. (2015). Streamlining of Bridge Piers as Scour Countermeasures Optimization of Cross Sections. Transportation Research Record, 2521(1), 162–171. doi:10.3141/2521-17.

Vijayasree, B. A., Eldho, T. I., Mazumder, B. S., & Ahmad, N. (2019). Influence of bridge pier shape on flow field and scour geometry. International Journal of River Basin Management, 17(1), 109–129. doi:10.1080/15715124.2017.1394315.

Laursen, E. M., & Toch, A. (1956). Scour around bridge piers and abutments. Iowa Highway Research Board, Iowa City, United States.

Farooq, R., & Ghumman, A. R. (2019). Impact assessment of pier shape and modifications on scouring around bridge pier. Water (Switzerland), 11(9), 1761. doi:10.3390/w11091761.

Keshavarz, A., Vaghefi, M., & Ahmadi, G. (2022). Effect of the Shape and Position of the Bridge Pier on the Bed Changes in the Sharp 180-Degree Bend. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 46(3), 2449–2467. doi:10.1007/s40996-021-00787-5.

Ismael, A., Gunal, M., & Hussein, H. (2015). Effect of Bridge Pier Position on Scour Reduction According to Flow Direction. Arabian Journal for Science and Engineering, 40(6), 1579–1590. doi:10.1007/s13369-015-1625-x.

Melville, B. W. (1997). Pier and Abutment Scour: Integrated Approach. Journal of Hydraulic Engineering, 123(2), 125–136. doi:10.1061/(asce)0733-9429(1997)123:2(125).

National Academies of Sciences, Engineering, and Medicine. (2011). Evaluation of Bridge Scour Research: Pier Scour Processes and Predictions. The National Academies Press, Washington, United States. doi:10.17226/22886.

Habibi, K., Fard, F. E., Pari, S. A. A., & Shafai-Bejestan, M. (2024). Experimental and theoretical study of sediment scour around angled bridge piers. Canadian Journal of Civil Engineering. doi:10.1139/cjce-2023-0277.

Hoffmans, G. J. C. M., & Verheij, H. J. (2009). Scour Manual. Routledge, London, United Kingdom. doi:10.1201/9780203740132.

do Carmo, J. A. (2005). Experimental study on local scour around bridge piers in rivers. WIT Transactions on Ecology and the Environment, 83. doi:10.2495/RM050011.

Ahmad, N., Melville, B., Mohammad, T., Ali, F., & Yusuf, B. (2016). Clear-water scour at long skewed bridge piers. Journal of the Chinese Institute of Engineers, 40(1), 10–18. doi:10.1080/02533839.2016.1259021.

Raudkivi, A. J. (1986). Functional Trends of Scour at Bridge Piers. Journal of Hydraulic Engineering, 112(1), 1–13. doi:10.1061/(asce)0733-9429(1986)112:1(1).

Melville, B. W., & Sutherland, A. J. (1988). Design Method for Local Scour at Bridge Piers. Journal of Hydraulic Engineering, 114(10), 1210–1226. doi:10.1061/(asce)0733-9429(1988)114:10(1210).

Richardson, E. V., & Davis, S. R. (2001). Evaluating scour at bridges (No. FHWA-NHI-01-001). Federal Highway Administration, Office of Bridge Technology, Washington, United States.

Chiew, Y. M. (1984). Local scour at bridge piers. PhD Thesis, University of Auckland, Auckland, New Zealand.

Abudallah Habib, I., Wan Mohtar, W. H. M., Muftah Shahot, K., El-Shafie, A., & Abd Manan, T. S. B. (2021). Bridge failure prevention: An overview of self-protected pier as flow altering countermeasures for scour Protection. Civil Engineering Infrastructures Journal, 54(1), 1–22. doi:10.22059/CEIJ.2020.292296.1627.

Melville, B. (2008, November). The physics of local scour at bridge piers. Fourth International Conference on Scour and Erosion, 5-7 November, 2008, Tokyo, Japan.

Ettema, R., Mostafa, E. A., Melville, B. W., & Yassin, A. A. (1998). Local Scour at Skewed Piers. Journal of Hydraulic Engineering, 124(7), 756–759. doi:10.1061/(asce)0733-9429(1998)124:7(756).

Fenocchi, A., & Natale, L. (2016). Using Numerical and Physical Modeling to Evaluate Total Scour at Bridge Piers. Journal of Hydraulic Engineering, 142(3). doi:10.1061/(asce)hy.1943-7900.0001096.

Peng Yu, & Zhu, L. (2020). Numerical simulation of local scour around bridge piers using novel inlet turbulent boundary conditions. Ocean Engineering, 218, 108166. doi:10.1016/j.oceaneng.2020.108166.

Shen, H. W., Schneider, V. R., & Karaki, S. (1969). Local Scour Around Bridge Piers. Journal of the Hydraulics Division, 95(6), 1919–1940. doi:10.1061/jyceaj.0002197.

Hancu, S. (1971). On the calculation of local scours in the area of bridge piers. Proceedings of the 14th IAHR congress, 29 August-3 September, 1971, Paris, France. (In French).

Sheppard, D. M., Odeh, M., & Glasser, T. (2004). Large Scale Clear-Water Local Pier Scour Experiments. Journal of Hydraulic Engineering, 130(10), 957–963. doi:10.1061/(asce)0733-9429(2004)130:10(957).

Breusers, H. N. C., Nicollet, G., & Shen, H. W. (1977). Erosion locale autour des piles cylindriques. Journal of Hydraulic Research, 15(3), 211–252. doi:10.1080/00221687709499645.

Heza, Y. B. M., Soliman, A. M., & Saleh, S. A. (2007). Prediction of the scour hole geometry around exposed bridge circular-pile foundation. Journal of Engineering and Applied Science-Cairo, 54(4), 375.

Richardson, J. E., & Panchang, V. G. (1998). Three-Dimensional Simulation of Scour-Inducing Flow at Bridge Piers. Journal of Hydraulic Engineering, 124(5), 530–540. doi:10.1061/(asce)0733-9429(1998)124:5(530).

Kumar, V., Baranwal, A., & Das, B. S. (2024). Prediction of local scour depth around bridge piers: modelling based on machine learning approaches. Engineering Research Express, 6(1), 15009. doi:10.1088/2631-8695/ad08ff.

Quinlan, J. R. (1992). Learning with continuous classes. 5th Australian joint conference on artificial intelligence, 16-18 November, 1992, Hobart, Australia.

Pal, M., Singh, N. K., & Tiwari, N. K. (2012). M5 model tree for pier scour prediction using field dataset. KSCE Journal of Civil Engineering, 16(6), 1079–1084. doi:10.1007/s12205-012-1472-1.

Hassan, Z. F., Karim, I. R., & Al-Shukur, A. H. K. (2020). Effect of interaction between bridge piers on local scouring in cohesive soils. Civil Engineering Journal (Iran), 6(4), 659–669. doi:10.28991/cej-2020-03091498.

Khaple, S., Hanmaiahgari, P., & Dey, S. (2014). Studies on the effect of an upstream pier as a scour protection measure of a downstream bridge pier. River Flow 2014, 2047–2052, CRC Press, Boca Raton, United States. doi:10.1201/b17133-273.

Amini Baghbadorani, D., Beheshti, A. A., & Ataie-Ashtiani, B. (2017). Scour hole depth prediction around pile groups: review, comparison of existing methods, and proposition of a new approach. Natural Hazards, 88(2), 977–1001. doi:10.1007/s11069-017-2900-9.

Hosseini, R., & Amini, A. (2015). Scour depth estimation methods around pile groups. KSCE Journal of Civil Engineering, 19(7), 2144–2156. doi:10.1007/s12205-015-0594-7.

Keshavarzi, A., Shrestha, C. K., Melville, B., Khabbaz, H., Ranjbar-Zahedani, M., & Ball, J. (2018). Estimation of maximum scour depths at upstream of front and rear piers for two in-line circular columns. Environmental Fluid Mechanics, 18(2), 537–550. doi:10.1007/s10652-017-9572-6.

Khaple, S., Hanmaiahgari, P. R., Gaudio, R., & Dey, S. (2017). Interference of an upstream pier on local scour at downstream piers. Acta Geophysica, 65(1), 29–46. doi:10.1007/s11600-017-0004-2.

Selamoğlu, M. (2015). Modeling temporal variation of scouring at dual bridge piers. Ph.D. Thesis, Middle East Technical University, Ankara, Turkey.

Ravanfar, S. M., Mohammadpour, R., & Sabzevari, T. (2023). Experimental study of local scour around non-uniform twin piers. International Journal of River Basin Management, 2023, 1–16. doi:10.1080/15715124.2023.2167823.

Elliott, K. R., & Baker, C. J. (1985). Effect of Pier Spacing on Scour Around Bridge Piers. Journal of Hydraulic Engineering, 111(7), 1105–1109. doi:10.1061/(asce)0733-9429(1985)111:7(1105).

Ataie-Ashtiani, B., & Beheshti, A. A. (2006). Experimental Investigation of Clear-Water Local Scour at Pile Groups. Journal of Hydraulic Engineering, 132(10), 1100–1104. doi:10.1061/(asce)0733-9429(2006)132:10(1100).

Liu, M. ming, Wang, H. cheng, Tang, G. qiang, Shao, F. fei, & Jin, X. (2022). Investigation of local scour around two vertical piles by using numerical method. Ocean Engineering, 244, 110405. doi:10.1016/j.oceaneng.2021.110405.

Dey, S., & Sarkar, A. (2006). Scour Downstream of an Apron Due to Submerged Horizontal Jets. Journal of Hydraulic Engineering, 132(3), 246–257. doi:10.1061/(asce)0733-9429(2006)132:3(246).

Yang, Y., Melville, B. W., Macky, G. H., & Shamseldin, A. Y. (2019). Local scour at complex bridge piers in close proximity under clear-water and live-bed flow regime. Water (Switzerland), 11(8), 1530. doi:10.3390/w11081530.

Ettema, R. (1980). Scour at Bridge Piers. Ph.D. Thesis, University of Auckland, Auckland, New Zealand.

Neill, C.R. (1967) Mean Velocity Criterion for Scour of Coarse Uniform Bed Material. Proceeding of the 12th Congress of the International Association of Hydraulics Research, 11-14 September, 1967, Colorado State University, Fort Collins, United States.

Raudkivi, A. J., & Ettema, R. (1983). Clear‐Water Scour at Cylindrical Piers. Journal of Hydraulic Engineering, 109(3), 338–350. doi:10.1061/(asce)0733-9429(1983)109:3(338).

Ettema, R., Melville, B. W., & Barkdoll, B. (1998). Scale Effect in Pier-Scour Experiments. Journal of Hydraulic Engineering, 124(6), 639–642. doi:10.1061/(asce)0733-9429(1998)124:6(639).

Jayaraman, S. (1995). Hydraulic modelling. Indian institute of Technology Madras, Chennai, India.

Dey, S. (2014). Fluvial Hydrodynamics. GeoPlanet: Earth and Planetary Sciences. Springer, Berlin, Germany. doi:10.1007/978-3-642-19062-9.

Alipour, A., Yarahmadi, J., & Mahdavi, M. (2014). Comparative Study of M5 Model Tree and Artificial Neural Network in Estimating Reference Evapotranspiration Using MODIS Products. Journal of Climatology, 1–11. doi:10.1155/2014/839205.

Etemad-Shahidi, A., & Ghaemi, N. (2011). Model tree approach for prediction of pile groups scour due to waves. Ocean Engineering, 38(13), 1522–1527. doi:10.1016/j.oceaneng.2011.07.012.

Mia, M. F., & Nago, H. (2003). Design Method of Time-Dependent Local Scour at Circular Bridge Pier. Journal of Hydraulic Engineering, 129(6), 420–427. doi:10.1061/(asce)0733-9429(2003)129:6(420).

Sheppard, D. M., Demir, H., & Melville, B. W. (2011). Scour at wide piers and long skewed piers. Transportation Research Board, Washington, United States.

Mostafa, E. A. (1994). Scour around skewed bridge piers. Alexandria University, Alexandria, Egypt.

Moussa, A. M. A. (2018). Evaluation of local scour around bridge piers for various geometrical shapes using mathematical models. Ain Shams Engineering Journal, 9(4), 2571–2580. doi:10.1016/j.asej.2017.08.003.

Liang, D., Gotoh, H., Scott, N., & Tang, H. (2013). Experimental Study of Local Scour around Twin Piles in Oscillatory Flows. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139(5), 404–412. doi:10.1061/(asce)ww.1943-5460.0000192.

Wang, H., Tang, H., Liu, Q., & Wang, Y. (2016). Local Scouring around Twin Bridge Piers in Open-Channel Flows. Journal of Hydraulic Engineering, 142(9), 06016008. doi:10.1061/(asce)hy.1943-7900.0001154.

Wang, Y., & Witten, I. H. (1996). Induction of model trees for predicting continuous classes. Working paper 96/23, The University of Waikato, Hamilton, New Zealand.

Pasha, M. M., Mahmood, A. H., & Shams, S. (2016). An analysis of scouring effects on various shaped bridge piers. Brunei Darussalam Journal of Technology and Commerce, 29-42.

Talib, A., Obeid, Z. H., & Hameed, H. K. (2016). New imperial equation for local scour around various bridge piers shapes. International Journal of Science and Research (IJSR), 5(9), 654-658.

Chabert, J., & Engeldinger, P. (1956). Study of Scour at Bridge Piers. Bureau Central d’Etudes les Equipment d’Outre-Mer, Laboratoire National d’Hydraulique, Chatou, France.

Bhattacharya, B., Price, R. K., & Solomatine, D. P. (2007). Machine Learning Approach to Modeling Sediment Transport. Journal of Hydraulic Engineering, 133(4), 440–450. doi:10.1061/(asce)0733-9429(2007)133:4(440).

Beg, M. (2004). Mutual interference of bridge piers on local scour. Proceedings of the Second International Conference on Scour and Erosion, 14-17 November, 2007, Singapore.

Devi, G., & Kumar, M. (2022). Experimental study of the local scour around the two piers in the tandem arrangement using ultrasonic ranging transducers. Ocean Engineering, 266, 112838. doi:10.1016/j.oceaneng.2022.112838.

Liang, F., Wang, C., Huang, M., & Wang, Y. (2017). Experimental observations and evaluations of formulae for local scour at pile groups in steady currents. Marine Georesources and Geotechnology, 35(2), 245–255. doi:10.1080/1064119X.2016.1147510.

Malik, R., & Setia, B. (2021). Local scour around closely placed bridge piers. ISH Journal of Hydraulic Engineering, 27(4), 396–403. doi:10.1080/09715010.2018.1559772.

Yang, Y., Qi, M., Wang, X., & Li, J. (2020). Experimental study of scour around pile groups in steady flows. Ocean Engineering, 195, 106651. doi:10.1016/j.oceaneng.2019.106651.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-06-019

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Siva Krishna Reddy, Sruthi Thazhathe Kalathil, Venu Chandra

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message