Applying Harmony Degree Equation and TOPSIS Combined with Entropy Weights in Surface Water Classification

Kieu Diem Le, Giao Thanh Nguyen


This study classified surface water quality in Can Tho city using the Eutrophication index, Harmony Degree Equation (HDE), and Technique of Order Preference by Similarity to Ideal Solution (TOPSIS). Water quality data were collected in two seasons at 38 locations with 18 parameters, including temperature, pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), nitrite (N-NO2-), nitrate (N-NO3-), ammonium (N-NH4+), orthophosphate (P-PO43-), Fe, F-, Pb, As, Hg, coliform, chlorine-, and phosphorus-based pesticides. Water quality parameters are compared with national technical regulations on surface water quality (QCVN 08-MT:2015/BTNMT). The HDE method based on entropy weight has been applied to evaluate the comprehensive harmony degree of water quality for various purposes. In addition, the TOPSIS was also used to rank water quality at each location and determine the priority level that required mitigation and treatment solutions. Surface water quality in the study area had low dissolved oxygen content and was contaminated with TSS and coliform in both seasons. Water quality in the rainy season tends to decrease compared to the dry season. Based on HDE results, water quality in the study area in the dry season was assessed as suitable for domestic activities (needs treatment), irrigation, and navigation (HDII = 0.922), while the rainy season was suitable for irrigation and navigation (HDIII= 1.00). Moreover, surface water in the study area was in a state of potential eutrophication (EI > 0), in which eutrophication was higher during the dry season. The SW25 and SW28 were the most seriously eutrophic in the dry and rainy seasons, respectively. TOPSIS analysis indicated that SW22 and SW28 need treatment measures in both seasons; furthermore, SW2-SW4 (dry season) and SW23 (rainy season) also need appropriate management and impact mitigation solutions. SW4 was affected by the most significant seasonal impacts, which have high priority in the dry season and are lowest in the rainy season. Therefore, future studies are needed to identify specific sources of variation at these locations to reduce impacts. The study results provide helpful information for the decision-making process and water quality management.


Doi: 10.28991/CEJ-2024-010-04-012

Full Text: PDF


Can Tho City; Eutrophication; Harmony Degree Equation; TOPSIS; Water Quality Assessment.


Li, Z. H., Li, Z. P., Tang, X., Hou, W. H., & Li, P. (2021). Distribution and risk assessment of toxic pollutants in surface water of the lower Yellow River, China. Water, 13(11). doi:10.3390/w13111582.

Luan, V. N., & Nam, N. D. (2022). The relationship between environment and economic development in Vietnam. Journal of Pharmaceutical Negative Results, 13(6), 99-102.

Liu, J., Liu, Y., Zhang, A., Liu, Y., Zhu, Y., Guo, M., & Zhang, R. (2019). Spatial distribution, source identification, and potential risk assessment of toxic contaminants in surface waters from Yulin, China. Environmental Monitoring and Assessment, 191(5), 293. doi:10.1007/s10661-019-7441-0.

Xi, H., Li, T., Yuan, Y., Chen, Q., & Wen, Z. (2023). River ecosystem health assessment based on fuzzy logic and harmony degree evaluation in a human-dominated river basin. Ecosystem Health and Sustainability, 9, 41. doi:10.34133/ehs.0041.

Wehrheim, C., Lübken, M., Stolpe, H., & Wichern, M. (2023). Identifying key influences on surface water quality in freshwater areas of the Vietnamese Mekong Delta from 2018 to 2020. Water, 15(7). doi:10.3390/w15071295.

Nguyen, T. T. N., Némery, J., Gratiot, N., Strady, E., Tran, V. Q., Nguyen, A. T., Aimé, J., & Peyne, A. (2019). Nutrient dynamics and eutrophication assessment in the tropical river system of Saigon – Dongnai (Southern Vietnam). Science of the Total Environment, 653, 370–383. doi:10.1016/j.scitotenv.2018.10.319.

Liu, J., Zhang, D., Tang, Q., Xu, H., Huang, S., Shang, D., & Liu, R. (2021). Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods. PLoS ONE, 16(1 January), e245525. doi:10.1371/journal.pone.0245525.

Qin, G., Liu, J., Xu, S., & Wang, T. (2020). Water quality assessment and pollution source apportionment in a highly regulated river of Northeast China. Environmental Monitoring and Assessment, 192(7), 1–16. doi:10.1007/s10661-020-08404-0.

Singh, R., Majumder, C. B., & Vidyarthi, A. K. (2023). Assessing the impacts of industrial wastewater on the inland surface water quality: An application of analytic hierarchy process (AHP) model-based water quality index and GIS techniques. Physics and Chemistry of the Earth, Parts A/B/C, 129, 103314. doi:10.1016/j.pce.2022.103314.

Anwar Sadat, M., Guan, Y., Zhang, D., Shao, G., Cheng, X., & Yang, Y. (2020). The associations between river health and water resources management lead to the assessment of river state. Ecological Indicators, 109, 105814. doi:10.1016/j.ecolind.2019.105814.

Zuo, Q., Jin, R., Ma, J., & Cui, G. (2015). Description and application of a mathematical method for the analysis of harmony. The Scientific World Journal, 2015, 1–9. doi:10.1155/2015/831396.

Wu, Z., Lai, X., & Li, K. (2021). Water quality assessment of rivers in Lake Chaohu Basin (China) using water quality index. Ecological Indicators, 121, 107021. doi:10.1016/j.ecolind.2020.107021.

Son, C. T., Giang, N. T. H., Thao, T. P., Nui, N. H., Lam, N. T., & Cong, V. H. (2020). Assessment of Cau River water quality assessment using a combination of water quality and pollution indices. Journal of Water Supply: Research and Technology - AQUA, 69(2), 160–172. doi:10.2166/aqua.2020.122.

Varol, M., & Tokatlı, C. (2023). Evaluation of the water quality of a highly polluted stream with water quality indices and health risk assessment methods. Chemosphere, 311, 137096. doi:10.1016/j.chemosphere.2022.137096.

Nguyen, T. G., & Huynh, T. H. N. (2022). Assessment of surface water quality and monitoring in southern Vietnam using multicriteria statistical approaches. Sustainable Environment Research, 32(1), 1–12. doi:10.1186/s42834-022-00133-y.

Unigwe, C. O., & Egbueri, J. C. (2023). Drinking water quality assessment based on statistical analysis and three water quality indices (MWQI, IWQI and EWQI): a case study. Environment, Development and Sustainability, 25(1), 686–707. doi:10.1007/s10668-021-02076-7.

Giao, N. T., Nhien, H. T. H., Anh, P. K., & Van Ni, D. (2021). Classification of water quality in low-lying area in Vietnamese Mekong Delta using set pair analysis method and Vietnamese water quality index. Environmental Monitoring and Assessment, 193(6), 319. doi:10.1007/s10661-021-09102-1.

Tian, R., & Wu, J. (2019). Groundwater quality appraisal by improved set pair analysis with game theory weightage and health risk estimation of contaminants for Xuecha drinking water source in a loess area in Northwest China. Human and Ecological Risk Assessment: An International Journal, 25(1–2), 132–157. doi:10.1080/10807039.2019.1573035.

Singh, K. R., Dutta, R., Kalamdhad, A. S., & Kumar, B. (2018). Risk characterization and surface water quality assessment of Manas River, Assam (India) with an emphasis on the TOPSIS method of multi-objective decision making. Environmental Earth Sciences, 77(23), 1–10. doi:10.1007/s12665-018-7970-9.

Singh, K. R., Dutta, R., Kalamdhad, A. S., & Kumar, B. (2019). Information entropy as a tool in surface water quality assessment. Environmental Earth Sciences, 78(1), 1–12. doi:10.1007/s12665-018-7998-x.

Ewaid, S. H., Mhajej, K. G., Abed, S. A., & Al-Ansari, N. (2021). Groundwater Hydrochemistry Assessment of North Dhi-Qar Province, South of Iraq Using Multivariate Statistical Techniques. IOP Conference Series: Earth and Environmental Science, 790(1), 12075. doi:10.1088/1755-1315/790/1/012075.

Giao, N. T., Nhien, H. T. H., Anh, P. K., & Thuptimdang, P. (2022). Combination of water quality, pollution indices, and multivariate statistical techniques for evaluating the surface water quality variation in Can Tho City, Vietnam. Environmental Monitoring and Assessment, 194(11), 844. doi:10.1007/s10661-022-10474-1.

Xiao, J., Gao, D., Zhang, H., Shi, H., Chen, Q., Li, H., Ren, X., & Chen, Q. (2023). Water quality assessment and pollution source apportionment using multivariate statistical techniques: a case study of the Laixi River Basin, China. Environmental Monitoring and Assessment, 195(2), 287. doi:10.1007/s10661-022-10855-6.

Assari, A., Mahesh, T., & Assari, E. (2012). Role of public participation in sustainability of historical city: usage of TOPSIS method. Indian Journal of Science and Technology, 5(3), 2289-2294. doi:10.17485/ijst/2012/v5i3.2.

Li, Z., Yang, T., Huang, C. S., Xu, C. Y., Shao, Q., Shi, P., Wang, X., & Cui, T. (2018). An improved approach for water quality evaluation: TOPSIS-based informative weighting and ranking (TIWR) approach. Ecological Indicators, 89, 356–364. doi:10.1016/j.ecolind.2018.02.014.

Alvandi, E., Soleimani-Sardo, M., Meshram, S. G., Farid Giglou, B., & Dahmardeh Ghaleno, M. R. (2021). Using Improved TOPSIS and Best Worst Method in prioritizing management scenarios for the watershed management in arid and semi-arid environments. Soft Computing, 25(16), 11363–11375. doi:10.1007/s00500-021-05933-9.

Sonavane, A., Narkhede, D., Pawar, S., & Maktum, T. (2021). Assessment of water quality using Fuzzy-AHP and TOPSIS. ITM Web of Conferences, 40, 02002. doi:10.1051/itmconf/20214002002.

Zuo, Q., Han, C., Liu, J., & Ma, J. (2018). A new method for water quality assessment: by harmony degree equation. Environmental Monitoring and Assessment, 190(3), 1–12. doi:10.1007/s10661-018-6541-6.

Luo, Z., Zuo, Q., & Shao, Q. (2018). A new framework for assessing river ecosystem health with consideration of human service demand. Science of the Total Environment, 640–641, 442–453. doi:10.1016/j.scitotenv.2018.05.361.

Zuo, Q., Li, W., Zhao, H., Ma, J., Han, C., & Luo, Z. (2021). A harmony-based approach for assessing and regulating human-water relationships: A case study of Henan province in China. Water (Switzerland), 13(1), 32. doi:10.3390/w13010032.

Zhang, J., Tang, D., Wang, M., Ahamd, I., Hu, J., Meng, Z., Liu, D., & Pan, S. (2023). A regional water resource allocation model based on the human–water harmony theory in the Yellow River Basin. Water (Switzerland), 15(7), 1388. doi:10.3390/w15071388.

Shi, Y., Yang, S., Chen, W., Wang, X., & Feng, C. (2023). Research on the construction of a human-water harmony model in the Yellow River Basin. Water Policy, 25(7), 742–757. doi:10.2166/wp.2023.130.

Zhao, M., Li, J., Zhang, Y., Han, Y., & Wei, J. (2023). Water cycle health assessment based on combined weight and hook trapezoid fuzzy TOPSIS model: A case study of nine provinces in the Yellow River basin, China. Ecological Indicators, 147, 109977. doi:10.1016/j.ecolind.2023.109977.

Lv, B., Liu, C., Li, T., Meng, F., Fu, Q., Ji, Y., & Hou, R. (2023). Evaluation of the water resource carrying capacity in Heilongjiang, eastern China, based on the improved TOPSIS model. Ecological Indicators, 150, 110208. doi:10.1016/j.ecolind.2023.110208.

Siddiqua, A. (2019). Emergence of Water Urbanism for Water Born “Can Tho.” Journal of Water Resource and Protection, 11(2), 166–180. doi:10.4236/jwarp.2019.112010.

Nguyen, H. Q., Radhakrishnan, M., Huynh, T. T. N., Baino-Salingay, M. L., Ho, L. P., Van der Steen, P., & Pathirana, A. (2017). Water quality dynamics of urban water bodies during flooding in Can Tho City, Vietnam. Water (Switzerland), 9(4), 260. doi:10.3390/w9040260.

Duc, N. H., Kumar, P., Lan, P. P., Kurniawan, T. A., Khedher, K. M., Kharrazi, A., Saito, O., & Avtar, R. (2023). Hydrochemical indices as a proxy for assessing land-use impacts on water resources: a sustainable management perspective and case study of Can Tho City, Vietnam. Natural Hazards, 117(3), 2573–2615. doi:10.1007/s11069-023-05957-4.

Thi, N. G. V., Thi, B. T. P., Nguyen, H. T., & Thanh, V. Q. (2021). Impact of climate change and socio-economic development on the water balance and water quality of the Can Tho River. IOP Conference Series: Earth and Environmental Science, 652(1), 12008. doi:10.1088/1755-1315/652/1/012008.

Department of Natural Resources and Environment (DoNRE). (2020). Report on the current state of the environment for 05 years, period 2015 – 2020. Department of Natural Resources and Environment of Can Tho City, Can Tho City, Vietnam. (In Vietnamese).

Center for Natural Resources and Environmental Monitoring (2022). Report summarizing the results of environmental quality monitoring in Can Tho City in 2022. Department of Natural Resources and Environment of Can Tho City, Can Tho city, Vietnam. (In Vietnamese).

APHA. (2017). Standard methods of for the examination of water and wastewater. American Public Health Association (APHA), Washington, United States.

MoNRE. (2015). National technical regulation on surface water quality (QCVN 08-MT:2015/BTNMT). Ministry of Natural Resources and Environment (MoNRE), Hanoi, Vietnam. (In Vietnamese).

Mishra, S., Sharma, M. P., & Kumar, A. (2016). Assessment of surface water quality in Surha Lake using pollution index, India. Journal of Materials and Environmental Science, 7, 713–719.

Yousefi, H., Zahedi, S., & Niksokhan, M. H. (2018). Modifying the analysis made by water quality index using multi-criteria decision making methods. Journal of African Earth Sciences, 138, 309–318. doi:10.1016/j.jafrearsci.2017.11.019.

Catherine, E. C., Danmama, A. A., Emeka, A., Emeka, N. K., & Michael, O. R. (2021). Assessment of surface water quality of Onuiyieke river in Imo State, Nigeria. GSC Biological and Pharmaceutical Sciences, 16(3), 071-084. doi:10.30574/gscbps.2021.16.3.0264.

Muoi, L. V., Srilert, C., Dang Tri, V. P., & Pham Van, T. (2022). Spatial and temporal variabilities of surface water and sediment pollution at the main tidal-influenced river in Ca Mau Peninsular, Vietnamese Mekong Delta. Journal of Hydrology: Regional Studies, 41, 101082. doi:10.1016/j.ejrh.2022.101082.

Nguyen, B. T., Vo, L. D., Nguyen, T. X., & Quang, N. X. (2020). The interactive effects of natural factor and pollution source on surface water quality in the Lower Mekong River Basin, Southwestern Vietnam. Water Resources, 47(5), 865-876. doi:10.1134/S0097807820050024.

Tam, N. T., Bao, T. Q., Minh, H. V. T., Thanh, N. T., Lien, B. T. B. & Minh, N. D. T. (2022). Evaluating the surface water quality affected by activities in Can Tho City. Vietnam Journal of Hydro-Meteorology, 733, 39–55. doi:10.36335/VNJHM.2022(733).39-55. (In Vietnamese).

Kamarudin, M. K. A., Wahab, N. A., Md Bati, S. N. A., Toriman, M. E., Saudi, A. S. M., Umar, R., & Sunardi. (2020). Seasonal variation on dissolved oxygen, biochemical oxygen demand and chemical oxygen demand in Terengganu River Basin, Malaysia. Journal of Environmental Science and Management, 23(2), 1–7. doi:10.47125/jesam/2020_2/01.

Lien, N. T. K., Huy, L. Q., Oanh, D. T. H., Phu, T. Q. & Ut, V. N. (2016). Water quality in mainstream and tributaries of Hau River. Can Tho University Journal of Science, 43, 68–79. doi:10.22144/ctu.jvn.2016.138. (In Vietnamese).

Tuan, D. D. A., Thu, B. A. & Trung, N. H. (2019). Assessing quality of surface water for urban water supply source for Soc Trang City. Can Tho University Journal of Science, 55, 61–70. doi:10.22144/ctu.jvn.2019.096. (In Vietnamese).

Edokpayi, J. N., Odiyo, J. O., Popoola, O. E., & Msagati, T. A. M. (2016). Assessment of trace metals contamination of surface water and sediment: A case study of Mvudi River, South Africa. Sustainability, 8(2), 135. doi:10.3390/su8020135.

Goyit, M. P., Solomon, O. A., & Kutshik, R. J. (2018). Distribution of fluoride in surface and groundwater: a case study of Langtang North, Plateau State, Nigeria. International Journal of Biological and Chemical Sciences, 12(2), 1057. doi:10.4314/ijbcs.v12i2.33.

Pham, A. D., Thieu, V. V. D., Nguyen, B. A., Dinh, T. T. H., Nguyen, T. T. T., & Nguyen, T. L. C. (2022). Assessment of heavy metal pollution in the surface water of the Doi Canal, the Cho Dem and Ben Luc Rivers, Vietnam. GeoScience Engineering, 68(1), 91–98. doi:10.35180/gse-2022-0072.

Hong, T. T. K., & Giao, N. T. (2022). Analysis of surface water quality in upstream province of Vietnamese Mekong Delta using multivariate statistics. Water, 14(12), 1975. doi:10.3390/w14121975.

Le, Q. T., Nguyen, K. V., & Nguyen, V. D. T. (2022). Assessment of surface water quality and some main rivers’ capacity of receiving wastewater in Ca Mau province, Vietnam. The Journal of Agriculture and Development, 21(3), 53-66. doi:10.52997/jad.7.03.2022.

Nguyen, T. G., Phan, K. A., & Huynh, T. H. N. (2022). Major concerns of surface water quality in south-west coastal regions of Vietnamese Mekong Delta. Sustainable Environment Research, 32(1), 1–14. doi:10.1186/s42834-022-00156-5.

Huang, X., Luo, H., Wu, Q., Li, Z., Chen, X., & Hei, L. (2020). Study on eutrophication characteristics of rainy and dry season in Shenzhen Bay. IOP Conference Series: Earth and Environmental Science, 467(1), 12117. doi:10.1088/1755-1315/467/1/012117.

Youping, S., Junjie, Z., & Jianzhe, Q. (2020). Analysis of eutrophication trend of surface water in Tianjin coastal area. E3S Web of Conferences, 206, 03002. doi:10.1051/e3sconf/202020603002.

Phung, D., Huang, C., Rutherford, S., Dwirahmadi, F., Chu, C., Wang, X., Nguyen, M., Nguyen, N. H., Do, C. M., Nguyen, T. H., & Dinh, T. A. D. (2015). Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam. Environmental Monitoring and Assessment, 187(5), 1–13. doi:10.1007/s10661-015-4474-x.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-04-012


  • There are currently no refbacks.

Copyright (c) 2024 Kieu Diem Le, Giao Thanh Nguyen

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.