Experimental and ANN Analysis of Shearing Rate Effects on Coarse Sand Crushing

Samer R. Rabab’ah, Omar H. Al Hattamleh, Ahmad N. Tarawneh, Hussien H. Aldeeky


The present study analyzes laboratory experiments on how shearing rate affects the shear strength and crushability of natural coarse sand, employing artificial neural network (ANN) analysis. This study tested three different coarse sands obtained from the crushing of natural rocks: Black Virgin Tuff, weathered Zeolitic Tuff, and calcareous limestone. The behavior of crushed sand specimens with consistent grading, which passed through sieve #4 and were retained on sieve #8, was analyzed using a direct shear box. The specimens were subjected to varied normal loads and shearing speeds to examine their behavior at different relative densities. The test results were analyzed using ANN to investigate the significance of shearing rates on shearing strength parameters, specifically internal mobilized peak friction, the constant volume (residual) internal friction angle, and the consequence of shearing rate on the particle's breakage index. The selected normal (Gaussian) rate significantly affected both the shear strength parameters and breakage. The loading rate increased both shear strength parameters and particle breakage. Therefore, it's highly recommended to maintain secure sets of shear strength values and comprehensive test data for assessing parameters at typical strain rates, prioritizing using slower rates whenever possible.


Doi: 10.28991/CEJ-2024-010-03-011

Full Text: PDF


Coarse Sand; Direct Shear Box; Grain Breakage; Density Index; Shearing Rate; ANN.


Okada, Y., Sassa, K., & Fukuoka, H. (2004). Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests. Engineering Geology, 75(3–4), 325–343. doi:10.1016/j.enggeo.2004.07.001.

Sevi, A., & Ge, L. (2012). Cyclic Behaviors of Railroad Ballast within the Parallel Gradation Scaling Framework. Journal of Materials in Civil Engineering, 24(7), 797–804. doi:10.1061/(asce)mt.1943-5533.0000460.

Kermani, M., Konrad, J.-M., & Smith, M. (2018). In Situ Short-Term and Long-Term Rockfill Compressibility as a Function of Void Ratio and Strength of Parent Rock. Journal of Geotechnical and Geoenvironmental Engineering, 144(4), 04018009. doi:10.1061/(asce)gt.1943-5606.0001835.

Altuhafi, F. N., Jardine, R. J., Georgiannou, V. N., & Moinet, W. W. (2018). Effects of particle breakage and stress reversal on the behaviour of sand around displacement piles. Geotechnique, 68(6), 546–555. doi:10.1680/jgeot.17.P.117.

Xiao, Y., Desai, C. S., Daouadji, A., Stuedlein, A. W., Liu, H., & Abuel-Naga, H. (2020). Grain crushing in geoscience materials–Key issues on crushing response, measurement and modeling: Review and preface. Geoscience Frontiers, 11(2), 363–374. doi:10.1016/j.gsf.2019.11.006.

Wang, Y., Cheng, Y., Yang, G., Xie, Y., Huang, H., & Liu, R. (2024). Study on the inhibitory effect of rubber on particle breakage and the impact on the volumetric deformation of calcareous sand under different loading modes. Construction and Building Materials, 414, 135014. doi:10.1016/j.conbuildmat.2024.135014.

Lobo-Guerrero, S., & Vallejo, L. E. (2006). Modeling granular crushing in ring shear tests: Experimental and numerical analyses. Soils and Foundations, 46(2), 147–157. doi:10.3208/sandf.46.147.

Lobo-Guerrero, S., & Vallejo, L. E. (2005). Crushing a weak granular material: Experimental numerical analyses. Geotechnique, 55(3), 245–249. doi:10.1680/geot.2005.55.3.245.

Fragaszy, R. J., & Voss, M. E. (1986). Undrained compression behavior of sand. Journal of Geotechnical Engineering, 112(3), 334–347. doi:10.1061/(ASCE)0733-9410(1986)112:3(334).

Karatza, Z., Andò, E., Papanicolopulos, S. A., Viggiani, G., & Ooi, J. Y. (2019). Effect of particle morphology and contacts on particle breakage in a granular assembly studied using X-ray tomography. Granular Matter, 21(3), 1-13. doi:10.1007/s10035-019-0898-2.

Xiao, Y., Long, L., Matthew Evans, T., Zhou, H., Liu, H., & Stuedlein, A. W. (2019). Effect of Particle Shape on Stress-Dilatancy Responses of Medium-Dense Sands. Journal of Geotechnical and Geoenvironmental Engineering, 145(2), 04018105. doi:10.1061/(asce)gt.1943-5606.0001994.

Varadarajan, A., Sharma, K. G., Abbas, S. M., & Dhawan, A. K. (2006). Constitutive Model for Rockfill Materials and Determination of Material Constants. International Journal of Geomechanics, 6(4), 226–237. doi:10.1061/(asce)1532-3641(2006)6:4(226).

Hyodo, M., Wu, Y., Aramaki, N., & Nakata, Y. (2017). Undrained monotonic and cyclic shear response and particle crushing of silica sand at low and high pressures. Canadian Geotechnical Journal, 54(2), 207–218. doi:10.1139/cgj-2016-0212.

Ovalle, C., & Hicher, P. Y. (2020). Modeling the effect of wetting on the mechanical behavior of crushable granular materials. Geoscience Frontiers, 11(2), 487–494. doi:10.1016/j.gsf.2019.06.009.

Alonso, E. E., Romero, E. E., & Ortega, E. (2016). Yielding of rockfill in relative humidity-controlled triaxial experiments. Acta Geotechnica, 11(3), 455–477. doi:10.1007/s11440-016-0437-9.

Xiao, Y., Meng, M., Wang, C., Wu, H., Fang, Q., & Liu, S. (2023). Breakage critical state of gravels with different gradings. Part I: Experimental results. Transportation Geotechnics, 42, 101087. doi:10.1016/j.trgeo.2023.101087.

Al-Hattamleh, O. H., Al-Deeky, H. H., & Akhtar, M. N. (2013). The Consequence of Particle Crushing in Engineering Properties of Granular Materials. International Journal of Geosciences, 04(07), 1055–1060. doi:10.4236/ijg.2013.47099.

Al-Hattamleh, O., Sharo, A., Abu Shanab, L., Aldeeky, H., & Al Dwairi, R. (2023). Effect of the quasi rate of loading in Particle Crushing and Engineering Properties of Black Tough Sand. Acta Montanistica Slovaca, 28(2), 301–313. doi:10.46544/AMS.v28i2.04.

Al-Hattamleh, O., Alshalabi, F., Al Qablan, H., & Al-Rousan, T. (2010). Effect of grain crushing and bedding plane inclination on Aqaba sand behavior. Bulletin of Engineering Geology and the Environment, 69(1), 41–49. doi:10.1007/s10064-009-0238-6.

Fu, Z., Chen, S., Zhong, Q., & Zhang, Y. (2019). Modeling interaction between loading-induced and creep strains of rockfill materials using a hardening elastoplastic constitutive model. Canadian Geotechnical Journal, 56(10), 1380–1394. doi:10.1139/cgj-2018-0435.

Li, J., Huang, Y., Ouyang, S., Guo, Y., Gao, H., Wu, L., Shi, Y., & Zhu, L. (2022). Transparent characterization and quantitative analysis of broken gangue’s 3D fabric under the bearing compression. International Journal of Mining Science and Technology, 32(2), 335–345. doi:10.1016/j.ijmst.2021.11.013.

Huang, J. Y., Hu, S. S., Xu, S. L., & Luo, S. N. (2017). Fractal crushing of granular materials under confined compression at different strain rates. International Journal of Impact Engineering, 106, 259–265. doi:10.1016/j.ijimpeng.2017.04.021.

Parab, N. D., Guo, Z., Hudspeth, M. C., Claus, B. J., Fezzaa, K., Sun, T., & Chen, W. W. (2017). Fracture mechanisms of glass particles under dynamic compression. International Journal of Impact Engineering, 106, 146–154. doi:10.1016/j.ijimpeng.2017.03.021.

Yamamuro, J. A., Bopp, P. A., & Lade, P. V. (1996). One-Dimensional Compression of Sands at High Pressures. Journal of Geotechnical Engineering, 122(2), 147–154. doi:10.1061/(asce)0733-9410(1996)122:2(147).

Miura, S., Yagi, K., & Asonuma, T. (2003). Deformation-strength evaluation of crushable volcanic soils by laboratory and in-situ testing. Soils and Foundations, 43(4), 47–57. doi:10.3208/sandf.43.4_47.

Barraclough, T. W., Blackford, J. R., Liebenstein, S., Sandfeld, S., Stratford, T. J., Weinländer, G., & Zaiser, M. (2017). Propagating compaction bands in confined compression of snow. Nature Physics, 13(3), 272–275. doi:10.1038/nphys3966.

Strahler, A. W., Stuedlein, A. W., & Arduino, P. (2018). Three-Dimensional Stress-Strain Response and Stress-Dilatancy of Well-Graded Gravel. International Journal of Geomechanics, 18(4), 04018014. doi:10.1061/(asce)gm.1943-5622.0001118.

Yu, F. (2017). Particle Breakage and the Drained Shear Behavior of Sands. International Journal of Geomechanics, 17(8), 04017041. doi:10.1061/(asce)gm.1943-5622.0000919.

Xiao, Y., Liu, H., Chen, Q., Ma, Q., Xiang, Y., & Zheng, Y. (2017). Particle breakage and deformation of carbonate sands with wide range of densities during compression loading process. Acta Geotechnica, 12(5), 1177–1184. doi:10.1007/s11440-017-0580-y.

Zhang, J., Li, M., Liu, Z., & Zhou, N. (2017). Fractal characteristics of crushed particles of coal gangue under compaction. Powder Technology, 305, 12–18. doi:10.1016/j.powtec.2016.09.049.

Indraratna, B., Ngo, T., & Rujikiatkamjorn, C. (2020). Performance of Ballast Influenced by Deformation and Degradation: Laboratory Testing and Numerical Modeling. International Journal of Geomechanics, 20(1), 04019138. doi:10.1061/(asce)gm.1943-5622.0001515.

Yang, L., Long, Z., Kuang, D., Liu, X., & Li, Z. (2023). Influences of size, shape and strain rate on mechanical properties of single coral particle. Journal of Building Engineering, 78, 107667. doi:10.1016/j.jobe.2023.107667.

Chen, J., Liu, Y., Hu, Q., & Gao, R. (2023). Effects of Particle Size and Grading on the Breakage of Railway Ballast: Laboratory Testing and Numerical Modeling. Sustainability, 15(23), 16363. doi:10.3390/su152316363.

Hardin, B. O. (1985). Crushing of soil particles. Journal of Geotechnical Engineering, 111(10), 1177–1192. doi:10.1061/(ASCE)0733-9410(1985)111:10(1177).

Einav, I. (2007). Breakage mechanics-Part I: Theory. Journal of the Mechanics and Physics of Solids, 55(6), 1274–1297. doi:10.1016/j.jmps.2006.11.003.

Xiao, Y., Wang, C., Wu, H., & Desai, C. S. (2021). New Simple Breakage Index for Crushable Granular Soils. International Journal of Geomechanics, 21(8). doi:10.1061/(asce)gm.1943-5622.0002091.

Chen, Q., Li, Z., Dai, Z., Wang, X., Zhang, C., & Zhang, X. (2023). Mechanical behavior and particle crushing of irregular granular material under high pressure using discrete element method. Scientific Reports, 13(1), 7843. doi:10.1038/s41598-023-35022-w.

ASTM D854-23. (2023). Test Methods for Specific Gravity of Soil Solids by Water Displacement Method. ASTM International, Pennsylvania, United States. doi:10.1520/D0854-23.

ASTM D7382-20. (2020). Standard Test Methods for Determination of Maximum Dry Unit Weight and Water Content Range for Effective Compaction of Granular Soils Using a Vibrating Hammer. ASTM International, Pennsylvania, United States. doi:10.1520/D7382-20.

ASTM D6913-04(2009)E1. (2017). Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM International, Pennsylvania, United States. doi:10.1520/D6913-04R09E01.

ASTM D2487-17. (2020). Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17.

ASTM D3080-04. (2012). Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International, Pennsylvania, United States. doi:10.1520/D3080-04.

ASTM D6528-17. (2017). Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils. ASTM International, Pennsylvania, United States. doi:10.1520/D6528-17.

Duncan, J. M., Wright, S. G., & Brandon, T. L. (2014). Soil strength and slope stability. John Wiley & Sons, Hoboken, United States.

Tarawneh, A., Almasabha, G., & Murad, Y. (2022). ColumnsNet: Neural Network Model for Constructing Interaction Diagrams and Slenderness Limit for FRP-RC Columns. Journal of Structural Engineering, 148(8), 04022089. doi:10.1061/(asce)st.1943-541x.0003389.

Asadzadeh, M., & Soroush, A. (2009). Direct shear testing on a rockfill material. Arabian Journal for Science and Engineering, 34(2 B), 379–396.

Wang, G., Wang, Z., Ye, Q., & Zha, J. (2021). Particle breakage evolution of coral sand using triaxial compression tests. Journal of Rock Mechanics and Geotechnical Engineering, 13(2), 321–334. doi:10.1016/j.jrmge.2020.06.010.

Li, G., Liu, Y.-J., Dano, C., & Hicher, P.-Y. (2015). Grading-Dependent Behavior of Granular Materials: From Discrete to Continuous Modeling. Journal of Engineering Mechanics, 141(6), 04014172. doi:10.1061/(asce)em.1943-7889.0000866.

Xiao, Y., & Liu, H. (2017). Elastoplastic Constitutive Model for Rockfill Materials Considering Particle Breakage. International Journal of Geomechanics, 17(1), 04016041. doi:10.1061/(asce)gm.1943-5622.0000681.

McDowell, G. R., & Bolton, M. D. (1998). On the micromechanics of crushable aggregates. Geotechnique, 48(5), 667–679. doi:10.1680/geot.1998.48.5.667.

Lade, P. V., Yamamuro, J. A., & Bopp, P. A. (1996). Significance of Particle Crushing in Granular Materials. Journal of Geotechnical Engineering, 122(4), 309–316. doi:10.1061/(asce)0733-9410(1996)122:4(309).

Feda, J. (2002). Notes on the effect of grain crushing on the granular soil behaviour. Engineering Geology, 63(1–2), 93–98. doi:10.1016/S0013-7952(01)00072-2.

Liu, M., Gao, Y., & Liu, H. (2014). An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear friction and particle breakage. International Journal for Numerical and Analytical Methods in Geomechanics, 38(9), 935–960. doi:10.1002/nag.2243.

Ning, F., Liu, J., Kong, X., & Zou, D. (2020). Critical State and Grading Evolution of Rockfill Material under Different Triaxial Compression Tests. International Journal of Geomechanics, 20(2), 04019154. doi:10.1061/(asce)gm.1943-5622.0001550.

Wei, H., Yin, M., Zhao, T., Yan, K., Shen, J., Meng, Q., Wang, X., & He, J. (2021). Effect of particle breakage on the shear strength of calcareous sands. Marine Geophysical Research, 42(3), 1-11. doi:10.1007/s11001-021-09440-2.

Full Text: PDF

DOI: 10.28991/CEJ-2024-010-03-011


  • There are currently no refbacks.

Copyright (c) 2024 samer rababah, Omar Al Hattamleh, Ahmad Tarawneh, Hussein AlDeeky

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.