Variation of the Hydraulic Conductivity of Clayey Soils in Exposure to Organic Permeants
Abstract
Clayey soils are the most common material used in waterproofing and play an essential role in waste and contamination control. Permeability is a key parameter in such problems and its determination is needed in ensuring the satisfactory performance of the soil. Research has shown that a permeant fluid with a low dielectric constant can shrink the double layer around the clay particles which will, in turn, increase the permeability of the soil. In this paper, the permeability of two types of clay with different plasticity, exposed to the flow of water and methanol as polar and miscible solvents and gasoline and car oil as non-polar and immiscible solvents is investigated. In addition, the effect of soil properties such as plasticity and compaction water content on permeability of the samples is examined. To this end, soil samples are prepared and compacted at various water contents. Then, permeability tests are conducted according to the modified constant head method and the effects of parameters such as the fluid dielectric constant, water content of the samples and soil plasticity are examined. The results demonstrate that the lower dielectric constant of the organic fluid decreases the thickness of the double layer, providing more space for the flow of the permeant and as a result, the permeability of the clay increases. The reduction of the permeant dielectric constant from 80.4 to 2.28 led to a remarkable increase in soil permeability.
Keywords
References
Wang, M. C., and C. C. Huang. “Soil Compaction and Permeability Prediction Models.” Journal of Environmental Engineering 110, no. 6 (December 1984): 1063–1083. doi:10.1061/(asce)0733-9372(1984)110:6(1063).
NBR 13292, Soil Permeability Determination, Constant head, (In Portuguese), 1995.
Mitchell. Fundamentals of Soil Behavior. Wiley, New York, 1976.
Mitchell, Hopper, and Campanella. "Permeability of compacted clay." Journal of the Soil Mechanics and Foundations Division, ASCE 91(4) (1965): 41-66.
Budhu, Muniram, R.F. Giese Jr., George Campbell, and Lynn Baumgrass. “The Permeability of Soils with Organic Fluids.” Canadian Geotechnical Journal 28, no. 1 (February 1991): 140–147. doi:10.1139/t91-015.
Nutting. "Physical analysis of oil sands. " American Association of Petroleum Geologists Bulletin 14 (1934): 1337-1349.
Amarasinghe, Priyanthi M., Kalpana S. Katti, and Dinesh R. Katti. “Insight into Role of Clay-Fluid Molecular Interactions on Permeability and Consolidation Behavior of Na-Montmorillonite Swelling Clay.” Journal of Geotechnical and Geoenvironmental Engineering 138, no. 2 (February 2012): 138–146. doi:10.1061/(asce)gt.1943-5606.0000567.
Helmholtz, H. “Studien Über Electrische Grenzschichten.” Annalen Der Physik Und Chemie 243, no. 7 (1879): 337–382. doi:10.1002/andp.18792430702.
Benischke, Gustav. “Allgemeine Grundgesetze Über Magnetismus Und Elektrizität.” Die Wissenschaftlichen Grundlagen Der Elektrotechnik (1914): 1–23. doi:10.1007/978-3-662-26013-5_1.
Quincke, G. “Ueber Die Fortführung Materieller Theilchen Durch Strömende Elektricität.” Annalen Der Physik Und Chemie 189, no. 8 (1861): 513–598. doi:10.1002/andp.18611890802.
Gouy. "Sur la constitution de la charge electrique a la surface d’un electrolyte." Anniue Physique (Paris) 4(9) (1910): 457-468. doi.org/10.1051/jphystap:019100090045700.
Chapman, David Leonard. “LI.A Contribution to the Theory of Electrocapillarity.” Philosophical Magazine Series 6 25, no. 148 (April 1913): 475–481. doi:10.1080/14786440408634187.
Machado, Sandro Lemos, Larissa da Silva Paes Cardoso, Iara Brandão de Oliveira, Digna de Faria Mariz, and Mehran Karimpour-Fard. “Modeling Soil Permeability When Percolated by Different Soil.” Transport in Porous Media 111, no. 3 (January 19, 2016): 763–793. doi:10.1007/s11242-016-0627-9.
Anandarajah, A. “Mechanism Controlling Permeability Change in Clays Due to Changes in Pore Fluid.” Journal of Geotechnical and Geoenvironmental Engineering 129, no. 2 (February 2003): 163–172. doi:10.1061/(asce)1090-0241(2003)129:2(163).
Budhu, Muniram, R.F. Giese Jr., George Campbell, and Lynn Baumgrass. “The Permeability of Soils with Organic Fluids.” Canadian Geotechnical Journal 28, no. 1 (February 1991): 140–147. doi:10.1139/t91-015.
de Oliveira. Clayey sediments contamination by automotive fuels: the problem of the permeability assessment (In Portuguese). Federal University of Bahia. Doctoral Thesis, (2001): 116.
Green, Lee, and Jones. "Clay-soils permeability and hazardous waste storage." Journal of the Water Pollution Control Federation 53 (1981): 1347-1354.
Mesri, Gholamreza. “Mechanisms Controlling the Permeability of Clays.” Clays and Clay Minerals 19, no. 3 (1971): 151–158. doi:10.1346/ccmn.1971.0190303.
Fernandez, Federico, and Robert M. Quigley. “Hydraulic Conductivity of Natural Clays Permeated with Simple Liquid Hydrocarbons.” Canadian Geotechnical Journal 22, no. 2 (May 1985): 205–214. doi:10.1139/t85-028.
Foreman, David E., and David E. Daniel. “Permeation of Compacted Clay with Organic Chemicals.” Journal of Geotechnical Engineering 112, no. 7 (July 1986): 669–681. doi:10.1061/(asce)0733-9410(1986)112:7(669).
Mosavat, Nasim, and Zalihe Nalbantoglu. “The Impact of Hazardous Waste Leachate on Performance of Clay Liners.” Waste Management & Research 31, no. 2 (November 27, 2012): 194–202. doi:10.1177/0734242x12467395.
Goodarzi, A.R., S. Najafi Fateh, and H. Shekary. “Impact of Organic Pollutants on the Macro and Microstructure Responses of Na-Bentonite.” Applied Clay Science 121–122 (March 2016): 17–28. doi:10.1016/j.clay.2015.12.023.
ASTM 698. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. ASTM International, West Conshohocken.
ASTM 2434-68. Standard Test Method for Permeability of Granular Soils (Constant Head). ASTM International, West Conshohocken.
BROWN, K. W., and J. C. THOMAS. “Conductivity of Three Commercially Available Clays to Petroleum Products and Organic Solvents.” Hazardous Waste 1, no. 4 (January 1984): 545–553. doi:10.1089/hzw.1984.1.545.
ANDERSON, D, K BROWN, and J THOMAS. “Conductivity of Compacted Clay Soils to Water and Organic Liquids.” Waste Management & Research 3, no. 4 (1985): 339–349. doi:10.1016/0734-242x(85)90127-2.
Bowders, John J., and David E. Daniel. “Hydraulic Conductivity of Compacted Clay to Dilute Organic Chemicals.” Journal of Geotechnical Engineering 113, no. 12 (December 1987): 1432–1448. doi:10.1061/(asce)0733-9410(1987)113:12(1432).
Fang. Introduction to Environmental Geotechnology. CRC press LLC, 1997.
Tabani, Masrouri, Rolland, Stemmelend. "Hydromechanical behaviour of a compacted bentonite-silt mixture." Clay Science for Engineering. In: Fukue, Adachi (eds). Balkema, 2001: 245-250.
Van Olphen, and Fritpiat, eds. Data Handbook for Clay Materials and Other Nonmetallic Minerals, Pergamon Press, New York,1979.
Selig, ET, DE Daniel, SJ Trautwein, SS Boynton, and DE Foreman. “Permeability Testing with Flexible-Wall Permeameters.” Geotechnical Testing Journal 7, no. 3 (1984): 113. doi:10.1520/gtj10487j.
Das. Principles of Geotechnical Engineering, 5th Edition. California State University, Sacramento, 2002.
Kaya, Abidin, and Hsai-Yang Fang. “The Effects of Organic Fluids on Physicochemical Parameters of Fine-Grained Soils.” Canadian Geotechnical Journal 37, no. 5 (October 2000): 943–950. doi:10.1139/t00-023.
Di Maio, C, L Santoli, and P Schiavone. “Volume Change Behaviour of Clays: The Influence of Mineral Composition, Pore Fluid Composition and Stress State.” Mechanics of Materials 36, no. 5–6 (May 2004): 435–451. doi:10.1016/s0167-6636(03)00070-x..
Fernandez, and Quigley. "Viscosity and dielectric constant controls on the hydraulic conductivity of clayey soils permeated with water-soluble organics." Canadian Geotechnical Journal 25 (1988): 582-589. DOI:10.1016/0148-9062(89)90117-4.
DOI: 10.28991/cej-030936
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Mehran karimpour Fard, Hanane Mortezaei
This work is licensed under a Creative Commons Attribution 4.0 International License.