Recycling of Eggshell Powder and Wheat Straw Ash as Cement Replacement Materials in Mortar

Ahlam O. Hussein, Rusul J. Ghayyib, Faten M. Radi, Zahraa F. Jawad, Mohammed S. Nasr, Ali Shubbar

Abstract


Cement is among the important contributors to carbon dioxide emissions in modern society. Researchers are studying solutions to reduce the cement content in concrete to minimize the negative impact on the environment. Among these solutions is replacing cement with other materials, such as waste, which also poses environmental damage and requires landfill areas for disposal. Among these wastes are eggshell powder ash (ESPA) and wheat straw ash (WSA), which were utilized as cement substitutes in green mortar production. Thirteen mixtures were cast, one as a reference without replacement and twelve others that included replacing ESPA and WSA (single and combined) with cement in 2%, 4%, 6%, and 8% proportions of cement's weight. The mechanical (compressive and flexural strength), microstructural (SEM), and thermogravimetric analysis (TG/DTA) properties of all mixtures were examined. The results showed a remarkable improvement in mechanical properties, and the best improvement was recorded for the (4%ESPA+4%WSA) mixture, which reached 73.3% in compressive strength and 56% in flexural strength, superior to the reference mixture. Furthermore, SEM analyses showed a dense and compact microstructure for the ESPA and WSA-based mortars. Therefore, the WSA and ESPA wastes can be recycled and utilized as a substitute for cement to produce an eco-friendly binder that significantly improves the microstructural and mechanical characteristics of mortar. In addition, combining the two materials also presents a viable option for creating a sustainable ternary blended binder (with cement) that boasts superior properties compared to using the WSA or ESPA individually.

 

Doi: 10.28991/CEJ-2024-010-01-05

Full Text: PDF


Keywords


Eggshell Powder Ash; Wheat Straw Ash; Mechanical Properties; SEM; Differential Thermal Analysis.

References


Chong, B. W., Othman, R., Ramadhansyah, P. J., Doh, S. I., & Li, X. (2020). Properties of concrete with eggshell powder: A review. Physics and Chemistry of the Earth, 120, 102951. doi:10.1016/j.pce.2020.102951.

Nasr, M. S., Hussain, T. H., & Najim, W. N. (2018). Properties of cement mortar containing biomass bottom ASH and sanitary ceramic wastes as a partial replacement of cement. International Journal of Civil Engineering and Technology, 9(10), 153–165.

Gunarani, G. I., Karthikeyan, B., Priyadharshini, A., Selvaraj, S. K., Jose, S., Vincent Herald Wilson, D., & Moges Adane, T. Sustainable Concrete Columns with GGBS and Industrial Sand. In A Comparative Study on Destructive and Nondestructive Tests on Damaged Columns Strengthened with GFRP Jacketing. Advances in Civil Engineering, 6716511, 1-11.

Hamad, M. A., Nasr, M., Shubbar, A., Al-Khafaji, Z., Al Masoodi, Z., Al-Hashimi, O., Kot, P., Alkhaddar, R., & Hashim, K. (2021). Production of ultra-high-performance concrete with low energy consumption and carbon footprint using supplementary cementitious materials instead of silica fume: A review. Energies, 14(24), 8291. doi:10.3390/en14248291.

Nasr, M. S., Hasan, Z. A., Abed, M. K., Dhahir, M. K., Najim, W. N., Shubbar, A. A., & Habeeb, Z. D. (2020). Utilization of high volume fraction of binary combinations of supplementary cementitious materials in the production of reactive powder concrete. Periodica Polytechnica Civil Engineering, 65(1), 335–343. doi:10.3311/PPci.16242.

Jonsung, S., & Lee, K.H. (2015). Sustainable concrete technology. Civil Engineering Dimension, 17(3), 158–165. doi:10.9744/ced.17.3.158-165.

Shi, X. C., & Shui, Z. (2023). Effect of eggshell powder addition on the properties of cement pastes with early CO2 curing and further water curing. Construction and Building Materials, 404, 133231. doi:10.1016/j.conbuildmat.2023.133231.

Hakeem, I. Y., Amin, M., Agwa, I. S., Abd-Elrahman, M. H., Ibrahim, O. M. O., & Samy, M. (2023). Ultra-high-performance concrete properties containing rice straw ash and nano eggshell powder. Case Studies in Construction Materials, 19, 2291. doi:10.1016/j.cscm.2023.e02291.

Khan, K., Ishfaq, M., Amin, M. N., Shahzada, K., Wahab, N., & Faraz, M. I. (2022). Evaluation of Mechanical and Microstructural Properties and GlobalWarming Potential of Green Concrete with Wheat Straw Ash and Silica Fume. Materials, 15(9), 3177. doi:10.3390/ma15093177.

Althoey, F., Zaid, O., Martínez-García, R., de Prado-Gil, J., Ahmed, M., & Yosri, A. M. (2023). Ultra-high-performance fiber-reinforced sustainable concrete modified with silica fume and wheat straw ash. Journal of Materials Research and Technology, 24, 6118–6139. doi:10.1016/j.jmrt.2023.04.179.

Sathiparan, N. (2021). Utilization prospects of eggshell powder in sustainable construction material – A review. Construction and Building Materials, 293, 123465. doi:10.1016/j.conbuildmat.2021.123465.

Pliya, P., & Cree, D. (2015). Limestone derived eggshell powder as a replacement in Portland cement mortar. Construction and Building Materials, 95, 1–9. doi:10.1016/j.conbuildmat.2015.07.103.

Tiong, H. Y., Lim, S. K., Lee, Y. L., Ong, C. F., & Yew, M. K. (2020). Environmental impact and quality assessment of using eggshell powder incorporated in lightweight foamed concrete. Construction and Building Materials, 244, 118341. doi:10.1016/j.conbuildmat.2020.118341.

Nandhini, K., & Karthikeyan, J. (2022). Effective utilization of waste eggshell powder in cement mortar. Materials Today: Proceedings, 61, 428–432. doi:10.1016/j.matpr.2021.11.328.

Chen, Y. K., Sun, Y., Wang, K. Q., Kuang, W. Y., Yan, S. R., Wang, Z. H., & Lee, H. S. (2022). Utilization of bio-waste eggshell powder as a potential filler material for cement: Analyses of zeta potential, hydration and sustainability. Construction and Building Materials, 325, 126220. doi:10.1016/j.conbuildmat.2021.126220.

Giraldo, P., Benavente, E., Manzano-Agugliaro, F., & Gimenez, E. (2019). Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy, 9(7), 352. doi:10.3390/agronomy9070352.

Pan, X., & Sano, Y. (2005). Fractionation of wheat straw by atmospheric acetic acid process. Bioresource Technology, 96(11), 1256–1263. doi:10.1016/j.biortech.2004.10.018.

Qudoos, A., Kim, H. G., Atta-ur-Rehman, & Ryou, J. S. (2018). Effect of mechanical processing on the pozzolanic efficiency and the microstructure development of wheat straw ash blended cement composites. Construction and Building Materials, 193, 481–490. doi:10.1016/j.conbuildmat.2018.10.229.

Amin, M. N., Murtaza, T., Shahzada, K., Khan, K., & Adil, M. (2019). Pozzolanic potential and mechanical performance of wheat straw ash incorporated sustainable concrete. Sustainability (Switzerland), 11(2), 519. doi:10.3390/su11020519.

Khan, M. S., Ali, F., & Zaib, M. A. (2019). A Study of Properties of Wheat Straw Ash as a Partial Cement Replacement in the Production of Green Concrete. UW Journal of Science and Technology, 3, 2616–4396.

Al-Kadhim Hameed, M. A., Razzq Alzerjawi, A. K., & Mahdi, Z. A. (2021). Studying the behavior of the concrete mixture with wheat straw as part of the cement. Journal of Physics: Conference Series, 1973(1), 12174. doi:10.1088/1742-6596/1973/1/012174.

Bheel, N., Ibrahim, M. H. W., Adesina, A., Kennedy, C., & Shar, I. A. (2021). Mechanical performance of concrete incorporating wheat straw ash as partial replacement of cement. Journal of Building Pathology and Rehabilitation, 6(1), 1–7. doi:10.1007/s41024-020-00099-7.

Katman, H. Y. B., Khai, W. J., Bheel, N., Kırgız, M. S., Kumar, A., Khatib, J., & Benjeddou, O. (2022). Workability, Strength, Modulus of Elasticity, and Permeability Feature of Wheat Straw Ash-Incorporated Hydraulic Cement Concrete. Buildings, 12(9), 1363. doi:10.3390/buildings12091363.

Paruthi, S., Khan, A. H., Kumar, A., Kumar, F., Hasan, M. A., Magbool, H. M., & Manzar, M. S. (2023). Sustainable cement replacement using waste eggshells: A review on mechanical properties of eggshell concrete and strength prediction using artificial neural network. Case Studies in Construction Materials, 18, 2160. doi:10.1016/j.cscm.2023.e02160.

BS EN 196–1. (2005). Methods of testing cement. Determination of strength. British Standards Institution-BSI and CEN European Committee for Standardization, London, United Kingdom.

Iraqi Standard NO.5. (1984). Portland Cement. Central Organization for Standardization and Quality Control, Baghdad, Iraq.

ASTM C494/C494M. (2013). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States.

Hassan, R. F., Jaber, M. H., Al-Salim, N. H., & Hussein, H. H. (2020). Experimental research on torsional strength of synthetic/steel fiber-reinforced hollow concrete beam. Engineering Structures, 220, 110948. doi:10.1016/j.engstruct.2020.110948.

Tan, Y. Y., Doh, S. I., & Chin, S. C. (2018). Eggshell as a partial cement replacement in concrete development. Magazine of Concrete Research, 70(13), 662–670. doi:10.1680/jmacr.17.00003.

Vivek, S., & Sophia, M. (2019). Efficient management of egg shell and conch shell wastes by utilization as bio-fillers in eco-friendly gypsum mortar. International Journal of Engineering and Advanced Technology, 9(2), 5590–5596.

ASTM C109/C109M. (2013). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, Pennsylvania, United States.

Kamaruddin, S., Goh, W. I., Abdul Mutalib, N. A. N., Jhatial, A. A., Mohamad, N., & Rahman, A. F. (2021). Effect of Combined Supplementary Cementitious Materials on the Fresh and Mechanical Properties of Eco-Efficient Self-Compacting Concrete. Arabian Journal for Science and Engineering, 46(11), 10953–10973. doi:10.1007/s13369-021-05656-x.

Pachideh, G., Gholhaki, M., & Ketabdari, H. (2020). Effect of pozzolanic wastes on mechanical properties, durability and microstructure of the cementitious mortars. Journal of Building Engineering, 29, 101178. doi:10.1016/j.jobe.2020.101178.

Shcherban’, E. M., Stel’makh, S. A., Beskopylny, A. N., Mailyan, L. R., Meskhi, B., Varavka, V., Beskopylny, N., & El’shaeva, D. (2022). Enhanced Eco-Friendly Concrete Nano-Change with Eggshell Powder. Applied Sciences (Switzerland), 12(13), 6606. doi:10.3390/app12136606.

Darkun, K., Febrina, L., & Lutfansa, A. (2022). Utilization a Mixture of Eggshells and Husk Ash to Reduce Environmental Impact. Environmental Research, Engineering and Management, 78(3), 110–118. doi:10.5755/j01.erem.78.3.31084.

Sibin, B., & Rizalman, A. N. (2021). Study on the Preparation of Eggshell Powder as a Partial Cement Replacement in Mortar. International Journal of Advance Research in Engineering Innovation, 3(1), 43–52.

Zaid, O., Martínez-García, R., & Aslam, F. (2022). Influence of Wheat Straw Ash as Partial Substitute of Cement on Properties of High-Strength Concrete Incorporating Graphene Oxide. Journal of Materials in Civil Engineering, 34(11), 4022295. doi:10.1061/(asce)mt.1943-5533.0004415.

Adhikary, S. K., Ashish, D. K., & Rudžionis, Ž. (2022). A review on sustainable use of agricultural straw and husk biomass ashes: Transitioning towards low carbon economy. Science of the Total Environment, 838, 156407. doi:10.1016/j.scitotenv.2022.156407.

Farooqi, M. U., & Ali, M. (2019). Effect of pre-treatment and content of wheat straw on energy absorption capability of concrete. Construction and Building Materials, 224, 572–583. doi:10.1016/j.conbuildmat.2019.07.086.

Rasid, N. N. A., Nur, N. H., Mohamed, A., Abdul, A. R., Majid, Z. A., & Huseien, G. F. (2023). Ground palm oil fuel ash and calcined eggshell powder as SiO2–CaO based accelerator in green concrete. Journal of Building Engineering, 65, 105617. doi:10.1016/j.jobe.2022.105617.

Yu, T. Y., Ing, D. S., & Choo, C. S. (2017). The effect of different curing methods on the compressive strength of eggshell concrete. Indian Journal of Science and Technology, 10(6), 1-4.

Kumar, P., Vijaya, R. S., & Jose, R. B. (2015). Experimental study on partial replacement of cement with egg shell powder. International Journal of Innovation in Engineering and Technology, 4, 334-341.

Li, J., Ren, W., Zhang, A., Li, S., Tan, J., & Liu, H. (2023). Mechanical Properties and Microstructure Analysis of Cement Mortar Mixed with Iron Ore Tailings. Buildings, 13(1), 149. doi:10.3390/buildings13010149.

Shiferaw, N., Habte, L., Thenepalli, T., & Ahn, J. W. (2019). Effect of eggshell powder on the hydration of cement paste. Materials, 12(15), 2483. doi:10.3390/ma12152483.

Nandhini, K., & Karthikeyan, J. (2022). Sustainable and greener concrete production by utilizing waste eggshell powder as cementitious material – A review. Construction and Building Materials, 335, 127482. doi:10.1016/j.conbuildmat.2022.127482.

Amin, M. N., Siffat, M. A., Shahzada, K., & Khan, K. (2022). Influence of Fineness of Wheat Straw Ash on Autogenous Shrinkage and Mechanical Properties of Green Concrete. Crystals, 12(5), 588. doi:10.3390/cryst12050588.

Vedalakshmi, R., Raj, A. S., Srinivasan, S., & Babu, K. G. (2003). Quantification of hydrated cement products of blended cements in low and medium strength concrete using TG and DTA technique. Thermochimica Acta, 407(1–2), 49–60. doi:10.1016/S0040-6031(03)00286-7.

Jawad, Z. F., & Hawas, M. N. (2023). Thermal analysis for concrete incorporated with different nano, micro and recycled materials. AIP Conference Proceedings, 2776. doi:10.1063/5.0135993.

Shaikh, F. U. A., & Supit, S. W. M. (2014). Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Construction and Building Materials, 70, 309–321. doi:10.1016/j.conbuildmat.2014.07.099.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-01-05

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Ahlam Obaid Hussein, Rrusul Jaber Ghayyib, Faten Mizher Radi, Zahraa Fakhri Jawad, Mohammed Salah Nasr, Ali Shubbar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message