Geotechnical Properties of Fly Ash Blended Expansive Soil: A Review
Abstract
Â
Doi: 10.28991/CEJ-SP2024-010-06
Full Text: PDF
Keywords
References
Tang, C. S., Wang, D. Y., Zhu, C., Zhou, Q. Y., Xu, S. K., & Shi, B. (2018). Characterizing drying-induced clayey soil desiccation cracking process using electrical resistivity method. Applied Clay Science, 152, 101–112. doi:10.1016/j.clay.2017.11.001.
Yang, B., Xu, K., & Zhang, Z. (2020). Mitigating evaporation and desiccation cracks in soil with the sustainable material biochar. Soil Science Society of America Journal, 84(2), 461–471. doi:10.1002/saj2.20047.
Zeng, H., Tang, C. S., Cheng, Q., Zhu, C., Yin, L. Y., & Shi, B. (2020). Drought-Induced Soil Desiccation Cracking Behavior With Consideration of Basal Friction and Layer Thickness. Water Resources Research, 56(7). doi:10.1029/2019WR026948.
Liu, J., Lei, H., Zheng, G., Zhou, H., & Zhang, X. (2017). Laboratory model study of newly deposited dredger fills using improved multiple-vacuum preloading technique. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 924–935. doi:10.1016/j.jrmge.2017.03.003.
Zornberg, J. G., Azevedo, M., Sikkema, M., & Odgers, B. (2017). Geosynthetics with enhanced lateral drainage capabilities in roadway systems. Transportation Geotechnics, 12, 85–100. doi:10.1016/j.trgeo.2017.08.008.
Dizon, A., & Orazem, M. E. (2020). Advances and challenges of electrokinetic dewatering of clays and soils. Current Opinion in Electrochemistry, 22, 17–24. doi:10.1016/j.coelec.2020.03.002.
Addai-Mensah, J. (2007). Enhanced flocculation and dewatering of clay mineral dispersions. Powder Technology, 179(1–2), 73–78. doi:10.1016/j.powtec.2006.11.008.
Vu, D. H., Bui, H. B., Kalantar, B., Bui, X. N., Nguyen, D. A., Le, Q. T., Do, N. H., & Nguyen, H. (2019). Composition and morphology characteristics of magnetic fractions of coal fly ash wastes processed in high-temperature exposure in thermal power plants. Applied Sciences (Switzerland), 9(9). doi:10.3390/app9091964.
Jayaranjan, M. L. D., van Hullebusch, E. D., & Annachhatre, A. P. (2014). Reuse options for coal fired power plant bottom ash and fly ash. Reviews in Environmental Science and Biotechnology, 13(4), 467–486. doi:10.1007/s11157-014-9336-4.
Jana, A., Ghosh, M., Sinha, S., Jothiramajayam, M., Nag, A., & Mukherjee, A. (2017). Hazard identification of coal fly ash leachate using a battery of cyto-genotoxic and biochemical tests in Allium cepa. Archives of Agronomy and Soil Science, 63(10), 1443–1453. doi:10.1080/03650340.2017.1280730.
Wang, N., Hao, L., Chen, J., Zhao, Q., & Xu, H. (2018). Adsorptive removal of organics from aqueous phase by acid-activated coal fly ash: preparation, adsorption, and Fenton regenerative valorization of “spent†adsorbent. Environmental Science and Pollution Research, 25(13), 12481–12490. doi:10.1007/s11356-018-1560-y.
Gollakota, A. R. K., Volli, V., & Shu, C. M. (2019). Progressive utilisation prospects of coal fly ash: A review. Science of the Total Environment, 672, 951–989. doi:10.1016/j.scitotenv.2019.03.337.
Bednar, A. J., Chappell, M. A., Seiter, J. M., Stanley, J. K., Averett, D. E., Jones, W. T., Pettway, B. A., Kennedy, A. J., Hendrix, S. H., & Steevens, J. A. (2010). Geochemical investigations of metals release from submerged coal fly ash using extended elutriate tests. Chemosphere, 81(11), 1393–1400. doi:10.1016/j.chemosphere.2010.09.026.
Valeev, D., Kunilova, I., Alpatov, A., Mikhailova, A., Goldberg, M., & Kondratiev, A. (2019). Complex utilisation of ekibastuz brown coal fly ash: Iron & carbon separation and aluminium extraction. Journal of Cleaner Production, 218, 192–201. doi:10.1016/j.jclepro.2019.01.342.
Sybertz, F. (1988). Pozzolanic activity of coal fly ash. Betonwerk und Fertigteil-Technik/ Concrete Plant Precast Technology, 54(1), 42–47.
Khandelwal, A., Patel, K. K., & Singh, V. P. (2024). Volume Change Behavior of Amended Expansive Soil Using Sugarcane Bagasse Ash-Based Geopolymer. Journal of Materials in Civil Engineering, 36(4), 4024006. doi:10.1061/jmcee7.mteng-16294.
Kishor, R., & Singh, V. P. (2023). Evaluation of Expansive Soil Amended with Fly Ash and Liquid Alkaline Activator. Transportation Infrastructure Geotechnology, 10(4), 685–706. doi:10.1007/s40515-022-00240-8.
Wang, H., Liu, T., Yan, C., & Wang, J. (2023). Expansive Soil Stabilization Using Alkali-Activated Fly Ash. Processes, 11(5), 1550. doi:10.3390/pr11051550.
Pesarakloo, V., Lajevardi, S. H., MolaAbasi, H., & Mirhosseini, S. M. (2024). Potential application of sludge pond ash as a novel additive for clay stabilization. Physics and Chemistry of the Earth, 133, 103534. doi:10.1016/j.pce.2023.103534.
Jamsawang, P., Adulyamet, B., Voottipruex, P., Jongpradist, P., Likitlersuang, S., & Tantayopin, K. (2023). The free swell potential of expansive clays stabilized with the shallow bottom ash mixing method. Engineering Geology, 315, 107027. doi:10.1016/j.enggeo.2023.107027.
Sengul, T., Akray, N., & Vitosoglu, Y. (2023). Investigating the effects of stabilization carried out using fly ash and polypropylene fiber on the properties of highway clay soils. Construction and Building Materials, 400, 132590. doi:10.1016/j.conbuildmat.2023.132590.
Pan, L., Liu, H., Qiu, W., & Yin, J. (2023). Effects of Salinity and Curing Time on Compression Behavior of Fly Ash Stabilized Marine Clay. KSCE Journal of Civil Engineering, 27(10), 4141–4151. doi:10.1007/s12205-023-1674-8.
Bhatt, A., Priyadarshini, S., Acharath Mohanakrishnan, A., Abri, A., Sattler, M., & Techapaphawit, S. (2019). Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials, 11. doi:10.1016/j.cscm.2019.e00263.
ASTM C618-19. (2022). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-19.
Mohanty, S. K., Pradhan, P. K., & Mohanty, C. R. (2016). Consolidation and Drainage Characteristics of Expansive Soil Stabilized with Fly Ash and Dolochar. Geotechnical and Geological Engineering, 34(5), 1435–1451. doi:10.1007/s10706-016-0053-3.
Kolay, P. K., & Ramesh, K. C. (2016). Reduction of Expansive Index, Swelling and Compression Behavior of Kaolinite and Bentonite Clay with Sand and Class C Fly Ash. Geotechnical and Geological Engineering, 34(1), 87–101. doi:10.1007/s10706-015-9930-4.
Puppala, A., Hoyos, L., Viyanant, C., & Musenda, C. (2001). Fiber and Fly Ash Stabilization Methods to Treat Soft Expansive Soils. Soft Ground Technology, 136-145. doi:10.1061/40552(301)11.
Mahedi, M., Cetin, B., & White, D. J. (2020). Cement, Lime, and Fly Ashes in Stabilizing Expansive Soils: Performance Evaluation and Comparison. Journal of Materials in Civil Engineering, 32(7), 04020177. doi:10.1061/(asce)mt.1943-5533.0003260.
Nalbantoǧlu, Z. (2004). Effectiveness of class C fly ash as an expansive soil stabilizer. Construction and Building Materials, 18(6), 377–381. doi:10.1016/j.conbuildmat.2004.03.011.
Mir, B. A., & Sridharan, A. (2013). Physical and Compaction Behaviour of Clay Soil-Fly Ash Mixtures. Geotechnical and Geological Engineering, 31(4), 1059–1072. doi:10.1007/s10706-013-9632-8.
Zha, F., Liu, S., Du, Y., & Cui, K. (2008). Behavior of expansive soils stabilized with fly ash. Natural Hazards, 47(3), 509–523. doi:10.1007/s11069-008-9236-4.
Punthutaecha, K., Puppala, A. J., Vanapalli, S. K., & Inyang, H. (2006). Volume Change Behaviors of Expansive Soils Stabilized with Recycled Ashes and Fibers. Journal of Materials in Civil Engineering, 18(2), 295–306. doi:10.1061/(asce)0899-1561(2006)18:2(295).
Sabat, A. K., & Pradhan, A. (2014). Fiber reinforced-fly ash stabilized expansive soil mixes as subgrade material in flexible pavement. Electronic Journal of Geotechnical Engineering, 19, 5757-5770.
Bose, B. (2012). Geo engineering properties of expansive soil stabilized with fly ash. Electronic Journal of Geotechnical Engineering, 17(1), 1339-1353.
Phanikumar, B. R., & Nagaraju, T. V. (2018). Effect of Fly Ash and Rice Husk Ash on Index and Engineering Properties of Expansive Clays. Geotechnical and Geological Engineering, 36(6), 3425–3436. doi:10.1007/s10706-018-0544-5.
Mollamahmutoğlu, M., Yılmaz, Y., & Güngör, A. G. (2009). Effect of a class C fly ash on the geotechnical properties of an expansive soil. International Journal of Engineering Research and Development, 1, 1-6.
Murmu, A. L., Jain, A., & Patel, A. (2019). Mechanical Properties of Alkali Activated Fly Ash Geopolymer Stabilized Expansive Clay. KSCE Journal of Civil Engineering, 23(9), 3875–3888. doi:10.1007/s12205-019-2251-z.
Rao, K. M., & Subbarao, G. V. R. (2012). Optimum fly ash for mechanical stabilization of expansive soils using 2 2 factorial experimental design. Natural Hazards, 60(2), 703–713. doi:10.1007/s11069-011-0040-1.
Faisal Noaman, M., Khan, M. A., Ali, K., & Jamal, A. (2023). Effect of fly ash on the shear strength of clay soil. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.02.069.
Lin, B., Cerato, A. B., Andrew, S. M., & Madden, M. E. E. (2013). Effect of fly ash on the behavior of expansive soils: Microscopic analysis. Environmental and Engineering Geoscience, 19(1), 85–94. doi:10.2113/gseegeosci.19.1.85.
Bin-Shafique, S., Rahman, K., Yaykiran, M., & Azfar, I. (2010). The long-term performance of two fly ash stabilized fine-grained soil subbases. Resources, Conservation and Recycling, 54(10), 666–672. doi:10.1016/j.resconrec.2009.11.007.
Bin-Shafique, S., Rahman, K., & Azfar, I. (2011). The Effect of Freezing-Thawing Cycles on Performance of Fly Ash Stabilized Expansive Soil Subbases. Geo-Frontiers Congress, 697–706. doi:10.1061/41165(397)72.
Saride, S., & Dutta, T. T. (2016). Effect of Fly-Ash Stabilization on Stiffness Modulus Degradation of Expansive Clays. Journal of Materials in Civil Engineering, 28(12). doi:10.1061/(asce)mt.1943-5533.0001678.
Çokça, E. (2001). Use of Class C Fly Ashes for the Stabilizationof an Expansive Soil. Journal of Geotechnical and Geoenvironmental Engineering, 127(7), 568–573. doi:10.1061/(asce)1090-0241(2001)127:7(568).
Darikandeh, F. (2018). Expansive soil stabilised by calcium carbide residue-fly ash columns. Proceedings of the Institution of Civil Engineers: Ground Improvement, 171(1), 49–58. doi:10.1680/jgrim.17.00033.
Gupta, C., & Sharma, R. K. (2014). Influence of marble dust, fly ash and beas sand on sub grade characteristics of expansive soil. Journal of Mechanical and Civil Engineering, 13, 13-18.
Karami, H., Pooni, J., Robert, D., Costa, S., Li, J., & Setunge, S. (2021). Use of secondary additives in fly ash-based soil stabilization for soft subgrades. Transportation Geotechnics, 29, 100585. doi:10.1016/j.trgeo.2021.100585.
Li, M., Fang, C., Kawasaki, S., & Achal, V. (2018). Fly ash incorporated with biocement to improve strength of expansive soil. Scientific Reports, 8(1), 2565. doi:10.1038/s41598-018-20921-0.
Mohamed, A. A. M. S., Yuan, J., Al-Ajamee, M., Dong, Y., Ren, Y., & Hakuzweyezu, T. (2023). Improvement of expansive soil characteristics stabilized with sawdust ash, high calcium fly ash and cement. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2023.e01894.
Sharma, A. K., & Sivapullaiah, P. V. (2016). Swelling behaviour of expansive soil treated with fly ash–GGBS based binder. Geomechanics and Geoengineering, 12(3), 191–200. doi:10.1080/17486025.2016.1215548.
Kolbe, J. L., Lee, L. S., Jafvert, C. T., & Muraka, I. P. (2011). Use of alkaline coal ash for reclamation of a former strip mine. Worl of Coal Ash (WOCA) Conference, 9-12 May, Denver, United States.
Ma, Q. Y., Cao, Z. M., & Yuan, P. (2018). Experimental Research on Microstructure and Physical-Mechanical Properties of Expansive Soil Stabilized with Fly Ash, Sand, and Basalt Fiber. Advances in Materials Science and Engineering, 9125127. doi:10.1155/2018/9125127.
Dissanayake, T. B. C. H., Senanayake, S. M. C. U., & Nasvi, M. C. M. (2017). Comparison of the Stabilization Behavior of Fly Ash and Bottom Ash Treated Expansive Soil. Engineer: Journal of the Institution of Engineers, Sri Lanka, 50(1), 11. doi:10.4038/engineer.v50i1.7240.
Phani Kumar, B. R., & Sharma, R. S. (2004). Effect of Fly Ash on Engineering Properties of Expansive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 764–767. doi:10.1061/(asce)1090-0241(2004)130:7(764).
Sharma, N. K., Swain, S. K., & Sahoo, U. C. (2012). Stabilization of a Clayey Soil with Fly Ash and Lime: A Micro Level Investigation. Geotechnical and Geological Engineering, 30(5), 1197–1205. doi:10.1007/s10706-012-9532-3.
Phanikumar, B. R., & Sharma, R. S. (2007). Volume Change Behavior of Fly Ash-Stabilized Clays. Journal of Materials in Civil Engineering, 19(1), 67–74. doi:10.1061/(asce)0899-1561(2007)19:1(67).
Kumar, P. G., & Harika, S. (2020). Stabilization of expansive subgrade soil by using fly ash. Materials Today: Proceedings, 45, 6558–6562. doi:10.1016/j.matpr.2020.11.469.
Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior. John Wiley & Sons, Hoboken, United States.
Lees, G., Abdelkader, M. O., & Hamdani, S. K. (1982). Effect of the Clay Fraction on Some Mechanical Properties of Lime-Soil Mixtures. Highway Engineer, 29(11), 2–9. doi:10.1016/0148-9062(84)91148-3.
Bell, F. G. (1996). Lime stabilization of clay minerals and soils. Engineering Geology, 42(4), 223–237. doi:10.1016/0013-7952(96)00028-2.
Du, Y., Li, S., & Hayashi, S. (1999). Swelling-shrinkage properties and soil improvement of compacted expansive soil, Ning-Liang Highway, China. Engineering Geology, 53(3–4), 351–358. doi:10.1016/S0013-7952(98)00086-6.
Kumar, A., Walia, B. S., & Bajaj, A. (2007). Influence of Fly Ash, Lime, and Polyester Fibers on Compaction and Strength Properties of Expansive Soil. Journal of Materials in Civil Engineering, 19(3), 242–248. doi:10.1061/(asce)0899-1561(2007)19:3(242).
Puppala, A. J., Punthutaecha, K., & Vanapalli, S. K. (2006). Soil-Water Characteristic Curves of Stabilized Expansive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(6), 736–751. doi:10.1061/(asce)1090-0241(2006)132:6(736).
DOI: 10.28991/CEJ-SP2024-010-06
Refbacks
Copyright (c) 2024 SHAMSHAD ALAM

This work is licensed under a Creative Commons Attribution 4.0 International License.