Geotechnical Properties of Fly Ash Blended Expansive Soil: A Review

Shamshad Alam, Nimer Ali Alselami

Abstract


Fly ash, an industrial byproduct, is used as both a building material and a soil stabilizer due to its pozzolanic properties. Moreover, it is challenging to extrapolate the results based on an inadequate amount of laboratory data because of the non-homogeneous character of the soil and the diversity in the chemical properties of fly ash. This review article fills in the gaps by providing an overview of the existing data related to the geotechnical characteristics of expansive soil stabilized with fly ash. The chemical composition of fly ash is provided in terms of oxides of various elements to help identify the kinds produced in different nations. Additionally, information about the physical and geotechnical characteristics of fly ash blended expansive soil is provided in order to comprehend the influence of the fly ash's chemical composition and the expansive soil's fines percentage. While the geotechnical property comprises Atterberg's limit, compaction, UCS, shear strength, free swelling index, CBR, and consolidation, the physical property includes specific gravity and durability. Shear modulus, damping ratio, and Poisson's ratio are used to describe the dynamic properties of the modified expansive soil. The published data in this field and the research gap will be identified by the researchers with the aid of this article.

 

Doi: 10.28991/CEJ-SP2024-010-06

Full Text: PDF


Keywords


Fly Ash; Expansive Soil; Chemical Property; Geotechnical Property.

References


Tang, C. S., Wang, D. Y., Zhu, C., Zhou, Q. Y., Xu, S. K., & Shi, B. (2018). Characterizing drying-induced clayey soil desiccation cracking process using electrical resistivity method. Applied Clay Science, 152, 101–112. doi:10.1016/j.clay.2017.11.001.

Yang, B., Xu, K., & Zhang, Z. (2020). Mitigating evaporation and desiccation cracks in soil with the sustainable material biochar. Soil Science Society of America Journal, 84(2), 461–471. doi:10.1002/saj2.20047.

Zeng, H., Tang, C. S., Cheng, Q., Zhu, C., Yin, L. Y., & Shi, B. (2020). Drought-Induced Soil Desiccation Cracking Behavior With Consideration of Basal Friction and Layer Thickness. Water Resources Research, 56(7). doi:10.1029/2019WR026948.

Liu, J., Lei, H., Zheng, G., Zhou, H., & Zhang, X. (2017). Laboratory model study of newly deposited dredger fills using improved multiple-vacuum preloading technique. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 924–935. doi:10.1016/j.jrmge.2017.03.003.

Zornberg, J. G., Azevedo, M., Sikkema, M., & Odgers, B. (2017). Geosynthetics with enhanced lateral drainage capabilities in roadway systems. Transportation Geotechnics, 12, 85–100. doi:10.1016/j.trgeo.2017.08.008.

Dizon, A., & Orazem, M. E. (2020). Advances and challenges of electrokinetic dewatering of clays and soils. Current Opinion in Electrochemistry, 22, 17–24. doi:10.1016/j.coelec.2020.03.002.

Addai-Mensah, J. (2007). Enhanced flocculation and dewatering of clay mineral dispersions. Powder Technology, 179(1–2), 73–78. doi:10.1016/j.powtec.2006.11.008.

Vu, D. H., Bui, H. B., Kalantar, B., Bui, X. N., Nguyen, D. A., Le, Q. T., Do, N. H., & Nguyen, H. (2019). Composition and morphology characteristics of magnetic fractions of coal fly ash wastes processed in high-temperature exposure in thermal power plants. Applied Sciences (Switzerland), 9(9). doi:10.3390/app9091964.

Jayaranjan, M. L. D., van Hullebusch, E. D., & Annachhatre, A. P. (2014). Reuse options for coal fired power plant bottom ash and fly ash. Reviews in Environmental Science and Biotechnology, 13(4), 467–486. doi:10.1007/s11157-014-9336-4.

Jana, A., Ghosh, M., Sinha, S., Jothiramajayam, M., Nag, A., & Mukherjee, A. (2017). Hazard identification of coal fly ash leachate using a battery of cyto-genotoxic and biochemical tests in Allium cepa. Archives of Agronomy and Soil Science, 63(10), 1443–1453. doi:10.1080/03650340.2017.1280730.

Wang, N., Hao, L., Chen, J., Zhao, Q., & Xu, H. (2018). Adsorptive removal of organics from aqueous phase by acid-activated coal fly ash: preparation, adsorption, and Fenton regenerative valorization of “spent” adsorbent. Environmental Science and Pollution Research, 25(13), 12481–12490. doi:10.1007/s11356-018-1560-y.

Gollakota, A. R. K., Volli, V., & Shu, C. M. (2019). Progressive utilisation prospects of coal fly ash: A review. Science of the Total Environment, 672, 951–989. doi:10.1016/j.scitotenv.2019.03.337.

Bednar, A. J., Chappell, M. A., Seiter, J. M., Stanley, J. K., Averett, D. E., Jones, W. T., Pettway, B. A., Kennedy, A. J., Hendrix, S. H., & Steevens, J. A. (2010). Geochemical investigations of metals release from submerged coal fly ash using extended elutriate tests. Chemosphere, 81(11), 1393–1400. doi:10.1016/j.chemosphere.2010.09.026.

Valeev, D., Kunilova, I., Alpatov, A., Mikhailova, A., Goldberg, M., & Kondratiev, A. (2019). Complex utilisation of ekibastuz brown coal fly ash: Iron & carbon separation and aluminium extraction. Journal of Cleaner Production, 218, 192–201. doi:10.1016/j.jclepro.2019.01.342.

Sybertz, F. (1988). Pozzolanic activity of coal fly ash. Betonwerk und Fertigteil-Technik/ Concrete Plant Precast Technology, 54(1), 42–47.

Khandelwal, A., Patel, K. K., & Singh, V. P. (2024). Volume Change Behavior of Amended Expansive Soil Using Sugarcane Bagasse Ash-Based Geopolymer. Journal of Materials in Civil Engineering, 36(4), 4024006. doi:10.1061/jmcee7.mteng-16294.

Kishor, R., & Singh, V. P. (2023). Evaluation of Expansive Soil Amended with Fly Ash and Liquid Alkaline Activator. Transportation Infrastructure Geotechnology, 10(4), 685–706. doi:10.1007/s40515-022-00240-8.

Wang, H., Liu, T., Yan, C., & Wang, J. (2023). Expansive Soil Stabilization Using Alkali-Activated Fly Ash. Processes, 11(5), 1550. doi:10.3390/pr11051550.

Pesarakloo, V., Lajevardi, S. H., MolaAbasi, H., & Mirhosseini, S. M. (2024). Potential application of sludge pond ash as a novel additive for clay stabilization. Physics and Chemistry of the Earth, 133, 103534. doi:10.1016/j.pce.2023.103534.

Jamsawang, P., Adulyamet, B., Voottipruex, P., Jongpradist, P., Likitlersuang, S., & Tantayopin, K. (2023). The free swell potential of expansive clays stabilized with the shallow bottom ash mixing method. Engineering Geology, 315, 107027. doi:10.1016/j.enggeo.2023.107027.

Sengul, T., Akray, N., & Vitosoglu, Y. (2023). Investigating the effects of stabilization carried out using fly ash and polypropylene fiber on the properties of highway clay soils. Construction and Building Materials, 400, 132590. doi:10.1016/j.conbuildmat.2023.132590.

Pan, L., Liu, H., Qiu, W., & Yin, J. (2023). Effects of Salinity and Curing Time on Compression Behavior of Fly Ash Stabilized Marine Clay. KSCE Journal of Civil Engineering, 27(10), 4141–4151. doi:10.1007/s12205-023-1674-8.

Bhatt, A., Priyadarshini, S., Acharath Mohanakrishnan, A., Abri, A., Sattler, M., & Techapaphawit, S. (2019). Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials, 11. doi:10.1016/j.cscm.2019.e00263.

ASTM C618-19. (2022). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-19.

Mohanty, S. K., Pradhan, P. K., & Mohanty, C. R. (2016). Consolidation and Drainage Characteristics of Expansive Soil Stabilized with Fly Ash and Dolochar. Geotechnical and Geological Engineering, 34(5), 1435–1451. doi:10.1007/s10706-016-0053-3.

Kolay, P. K., & Ramesh, K. C. (2016). Reduction of Expansive Index, Swelling and Compression Behavior of Kaolinite and Bentonite Clay with Sand and Class C Fly Ash. Geotechnical and Geological Engineering, 34(1), 87–101. doi:10.1007/s10706-015-9930-4.

Puppala, A., Hoyos, L., Viyanant, C., & Musenda, C. (2001). Fiber and Fly Ash Stabilization Methods to Treat Soft Expansive Soils. Soft Ground Technology, 136-145. doi:10.1061/40552(301)11.

Mahedi, M., Cetin, B., & White, D. J. (2020). Cement, Lime, and Fly Ashes in Stabilizing Expansive Soils: Performance Evaluation and Comparison. Journal of Materials in Civil Engineering, 32(7), 04020177. doi:10.1061/(asce)mt.1943-5533.0003260.

Nalbantoǧlu, Z. (2004). Effectiveness of class C fly ash as an expansive soil stabilizer. Construction and Building Materials, 18(6), 377–381. doi:10.1016/j.conbuildmat.2004.03.011.

Mir, B. A., & Sridharan, A. (2013). Physical and Compaction Behaviour of Clay Soil-Fly Ash Mixtures. Geotechnical and Geological Engineering, 31(4), 1059–1072. doi:10.1007/s10706-013-9632-8.

Zha, F., Liu, S., Du, Y., & Cui, K. (2008). Behavior of expansive soils stabilized with fly ash. Natural Hazards, 47(3), 509–523. doi:10.1007/s11069-008-9236-4.

Punthutaecha, K., Puppala, A. J., Vanapalli, S. K., & Inyang, H. (2006). Volume Change Behaviors of Expansive Soils Stabilized with Recycled Ashes and Fibers. Journal of Materials in Civil Engineering, 18(2), 295–306. doi:10.1061/(asce)0899-1561(2006)18:2(295).

Sabat, A. K., & Pradhan, A. (2014). Fiber reinforced-fly ash stabilized expansive soil mixes as subgrade material in flexible pavement. Electronic Journal of Geotechnical Engineering, 19, 5757-5770.

Bose, B. (2012). Geo engineering properties of expansive soil stabilized with fly ash. Electronic Journal of Geotechnical Engineering, 17(1), 1339-1353.

Phanikumar, B. R., & Nagaraju, T. V. (2018). Effect of Fly Ash and Rice Husk Ash on Index and Engineering Properties of Expansive Clays. Geotechnical and Geological Engineering, 36(6), 3425–3436. doi:10.1007/s10706-018-0544-5.

Mollamahmutoğlu, M., Yılmaz, Y., & Güngör, A. G. (2009). Effect of a class C fly ash on the geotechnical properties of an expansive soil. International Journal of Engineering Research and Development, 1, 1-6.

Murmu, A. L., Jain, A., & Patel, A. (2019). Mechanical Properties of Alkali Activated Fly Ash Geopolymer Stabilized Expansive Clay. KSCE Journal of Civil Engineering, 23(9), 3875–3888. doi:10.1007/s12205-019-2251-z.

Rao, K. M., & Subbarao, G. V. R. (2012). Optimum fly ash for mechanical stabilization of expansive soils using 2 2 factorial experimental design. Natural Hazards, 60(2), 703–713. doi:10.1007/s11069-011-0040-1.

Faisal Noaman, M., Khan, M. A., Ali, K., & Jamal, A. (2023). Effect of fly ash on the shear strength of clay soil. Materials Today: Proceedings. doi:10.1016/j.matpr.2023.02.069.

Lin, B., Cerato, A. B., Andrew, S. M., & Madden, M. E. E. (2013). Effect of fly ash on the behavior of expansive soils: Microscopic analysis. Environmental and Engineering Geoscience, 19(1), 85–94. doi:10.2113/gseegeosci.19.1.85.

Bin-Shafique, S., Rahman, K., Yaykiran, M., & Azfar, I. (2010). The long-term performance of two fly ash stabilized fine-grained soil subbases. Resources, Conservation and Recycling, 54(10), 666–672. doi:10.1016/j.resconrec.2009.11.007.

Bin-Shafique, S., Rahman, K., & Azfar, I. (2011). The Effect of Freezing-Thawing Cycles on Performance of Fly Ash Stabilized Expansive Soil Subbases. Geo-Frontiers Congress, 697–706. doi:10.1061/41165(397)72.

Saride, S., & Dutta, T. T. (2016). Effect of Fly-Ash Stabilization on Stiffness Modulus Degradation of Expansive Clays. Journal of Materials in Civil Engineering, 28(12). doi:10.1061/(asce)mt.1943-5533.0001678.

Çokça, E. (2001). Use of Class C Fly Ashes for the Stabilizationof an Expansive Soil. Journal of Geotechnical and Geoenvironmental Engineering, 127(7), 568–573. doi:10.1061/(asce)1090-0241(2001)127:7(568).

Darikandeh, F. (2018). Expansive soil stabilised by calcium carbide residue-fly ash columns. Proceedings of the Institution of Civil Engineers: Ground Improvement, 171(1), 49–58. doi:10.1680/jgrim.17.00033.

Gupta, C., & Sharma, R. K. (2014). Influence of marble dust, fly ash and beas sand on sub grade characteristics of expansive soil. Journal of Mechanical and Civil Engineering, 13, 13-18.

Karami, H., Pooni, J., Robert, D., Costa, S., Li, J., & Setunge, S. (2021). Use of secondary additives in fly ash-based soil stabilization for soft subgrades. Transportation Geotechnics, 29, 100585. doi:10.1016/j.trgeo.2021.100585.

Li, M., Fang, C., Kawasaki, S., & Achal, V. (2018). Fly ash incorporated with biocement to improve strength of expansive soil. Scientific Reports, 8(1), 2565. doi:10.1038/s41598-018-20921-0.

Mohamed, A. A. M. S., Yuan, J., Al-Ajamee, M., Dong, Y., Ren, Y., & Hakuzweyezu, T. (2023). Improvement of expansive soil characteristics stabilized with sawdust ash, high calcium fly ash and cement. Case Studies in Construction Materials, 18. doi:10.1016/j.cscm.2023.e01894.

Sharma, A. K., & Sivapullaiah, P. V. (2016). Swelling behaviour of expansive soil treated with fly ash–GGBS based binder. Geomechanics and Geoengineering, 12(3), 191–200. doi:10.1080/17486025.2016.1215548.

Kolbe, J. L., Lee, L. S., Jafvert, C. T., & Muraka, I. P. (2011). Use of alkaline coal ash for reclamation of a former strip mine. Worl of Coal Ash (WOCA) Conference, 9-12 May, Denver, United States.

Ma, Q. Y., Cao, Z. M., & Yuan, P. (2018). Experimental Research on Microstructure and Physical-Mechanical Properties of Expansive Soil Stabilized with Fly Ash, Sand, and Basalt Fiber. Advances in Materials Science and Engineering, 9125127. doi:10.1155/2018/9125127.

Dissanayake, T. B. C. H., Senanayake, S. M. C. U., & Nasvi, M. C. M. (2017). Comparison of the Stabilization Behavior of Fly Ash and Bottom Ash Treated Expansive Soil. Engineer: Journal of the Institution of Engineers, Sri Lanka, 50(1), 11. doi:10.4038/engineer.v50i1.7240.

Phani Kumar, B. R., & Sharma, R. S. (2004). Effect of Fly Ash on Engineering Properties of Expansive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 764–767. doi:10.1061/(asce)1090-0241(2004)130:7(764).

Sharma, N. K., Swain, S. K., & Sahoo, U. C. (2012). Stabilization of a Clayey Soil with Fly Ash and Lime: A Micro Level Investigation. Geotechnical and Geological Engineering, 30(5), 1197–1205. doi:10.1007/s10706-012-9532-3.

Phanikumar, B. R., & Sharma, R. S. (2007). Volume Change Behavior of Fly Ash-Stabilized Clays. Journal of Materials in Civil Engineering, 19(1), 67–74. doi:10.1061/(asce)0899-1561(2007)19:1(67).

Kumar, P. G., & Harika, S. (2020). Stabilization of expansive subgrade soil by using fly ash. Materials Today: Proceedings, 45, 6558–6562. doi:10.1016/j.matpr.2020.11.469.

Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior. John Wiley & Sons, Hoboken, United States.

Lees, G., Abdelkader, M. O., & Hamdani, S. K. (1982). Effect of the Clay Fraction on Some Mechanical Properties of Lime-Soil Mixtures. Highway Engineer, 29(11), 2–9. doi:10.1016/0148-9062(84)91148-3.

Bell, F. G. (1996). Lime stabilization of clay minerals and soils. Engineering Geology, 42(4), 223–237. doi:10.1016/0013-7952(96)00028-2.

Du, Y., Li, S., & Hayashi, S. (1999). Swelling-shrinkage properties and soil improvement of compacted expansive soil, Ning-Liang Highway, China. Engineering Geology, 53(3–4), 351–358. doi:10.1016/S0013-7952(98)00086-6.

Kumar, A., Walia, B. S., & Bajaj, A. (2007). Influence of Fly Ash, Lime, and Polyester Fibers on Compaction and Strength Properties of Expansive Soil. Journal of Materials in Civil Engineering, 19(3), 242–248. doi:10.1061/(asce)0899-1561(2007)19:3(242).

Puppala, A. J., Punthutaecha, K., & Vanapalli, S. K. (2006). Soil-Water Characteristic Curves of Stabilized Expansive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(6), 736–751. doi:10.1061/(asce)1090-0241(2006)132:6(736).


Full Text: PDF

DOI: 10.28991/CEJ-SP2024-010-06

Refbacks





Copyright (c) 2024 SHAMSHAD ALAM

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message