Effects of GFRP Stirrup Spacing on the Behavior of Doubly GFRP-Reinforced Concrete Beams

Musa AbdulMuttalib Issa, Abbas A. Allawi, Nazar Oukaili

Abstract


This study investigates the impact of varying glass fiber-reinforced polymer (GFRP) stirrup spacing on the performance of doubly GFRP-reinforced concrete beams. The research focuses on assessing the behavior of GFRP-reinforced concrete beams, including load-carrying capacity, cracking, and deformability. It explores the feasibility and effectiveness of GFRP bars as an alternative to traditional steel reinforcement in concrete structures. Six concrete beams with a cross-section of 300 mm (wide) × 250 mm (deep), simply supported on a 2100 mm span, were tested. The beams underwent four-point bending with two concentrated loads applied symmetrically at one-third of the span length, resulting in a shear span (a)-to-depth (h) ratio of 2.8. The experimental findings reveal that altering the GFRP stirrup spacing along the longitudinal axis of the beams, from 200 mm (equivalent to the effective depth (d)) to 50 mm (equal to (d⁄4)), altered the mode of failure from flexure-shear to flexure-compression. However, when the spacing was equal to or less than (d⁄3), there was no significant improvement in load-carrying capacity, as the contribution of GFRP bars in resisting shear loads was limited. Under service loads, the GFRP-reinforced beams exhibited wider cracks, but reducing the stirrup spacing helped restrain crack widening. Incorporating GFRP bars in the compression zone had a positive effect on reducing crack width in the tension zone. Additionally, using GFRP stirrups with spacing varying between (d) and (d⁄2) in the pure bending region increased the deflection ductility indexes. To enhance the ductility of GFRP-reinforced concrete beams, it is recommended to use GFRP stirrups in the pure bending region with spacing greater than the spacing between GFRP stirrups in the shear spans. The study highlights that the current ACI code overestimates the shear capacity provided by GFRP stirrups, particularly when the spacing is less than or equal to (d⁄3).

 

Doi: 10.28991/CEJ-2024-010-02-011

Full Text: PDF


Keywords


GFRP Bars; Doubly Reinforced Concrete Section; Flexural Strength; Shear Strength; Dowel Action; Deflection; Cracking.

References


Moawad, M. S., & Fawzi, A. (2021). Performance of concrete beams partially/fully reinforced with glass fiber polymer bars. Journal of Engineering and Applied Science, 68, 38. doi:10.1186/s44147-021-00028-6.

Saleh, Z., Goldston, M., Remennikov, A. M., & Sheikh, M. N. (2019). Flexural design of GFRP bar reinforced concrete beams: An appraisal of code recommendations. Journal of Building Engineering, 25. doi:10.1016/j.jobe.2019.100794.

Al-Salloum, Y., Sayed, S. H., & Almusallam, T. H. (1997). Behavior of Concrete Beams Doubly Reinforced by GFRP Bars. Proceedings of the Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3), 14-16 October, 1997, Sapporo, Japan.

Said, A. M. I. (2015). Evaluation of Deflection in High Strength Concrete (HSC) I-Beam Reinforced with Carbon Fiber Reinforced Polymer (CFRP) Bars. The 7th Asia Pacific Young Researchers and Graduates Symposium, 20-21 August, 2015, University of Malaya, Kuala Lumpur, Malaysia.

Said, A. I., & Tuma, N. H. (2021). Numerical Modeling for Flexural Behavior of UHPC Beams Reinforced with Steel and Sand-Coated CFRP Bars. IOP Conference Series: Earth and Environmental Science, 856(1), 12003. doi:10.1088/1755-1315/856/1/012003.

Said, A. I., & Abbas, O. M. (2023). Serviceability behavior of High Strength Concrete I-beams reinforced with Carbon Fiber Reinforced Polymer bars. Journal of Engineering, 19(11), 1515–1530. doi:10.31026/j.eng.2013.11.10.

Ali, S. I., & Allawi, A. A. (2021). Effect of Web Stiffeners on The Flexural Behavior of Composite GFRP- Concrete ‎Beam Under Impact Load. Journal of Engineering, 27(3), 76–92. doi:10.31026/j.eng.2021.03.06.

Mohammed, S. A., & Said, A. M. I. (2022). Analysis of concrete beams reinforced by GFRP bars with varying parameters. Journal of the Mechanical Behavior of Materials, 31(1), 767–774. doi:10.1515/jmbm-2022-0068.

Ali, H. H., & Said, A. M. I. (2022). Flexural behavior of concrete beams with horizontal and vertical openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. Journal of the Mechanical Behavior of Materials, 31(1), 407–415. doi:10.1515/jmbm-2022-0045.

Lin, X., & Zhang, Y. X. (2013). Bond-slip behaviour of FRP-reinforced concrete beams. Construction and Building Materials, 44, 110–117. doi:10.1016/j.conbuildmat.2013.03.023.

Issa, M. S., Metwally, I. M., & Elzeiny, S. M. (2011). Influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP rebars. Engineering Structures, 33(5), 1754–1763. doi:10.1016/j.engstruct.2011.02.014.

Said, M., Adam, M. A., Mahmoud, A. A., & Shanour, A. S. (2016). Experimental and analytical shear evaluation of concrete beams reinforced with glass fiber reinforced polymers bars. Construction and Building Materials, 102, 574–591. doi:10.1016/j.conbuildmat.2015.10.185.

Wegian, F. M., & Abdalla, H. A. (2005). Shear capacity of concrete beams reinforced with fiber reinforced polymers. Composite Structures, 71(1), 130–138. doi:10.1016/j.compstruct.2004.10.001.

Chidananda, S. H., & Khadiranaikar, R. B. (2017). Flexural behaviour of concrete beams reinforced with GFRP rebars. International Journal of Advance Research, Ideas and Innovations in Technology, 3(5), 119-128.

Attari, N., Amziane, S., & Chemrouk, M. (2012). Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets. Construction and Building Materials, 37, 746–757. doi:10.1016/j.conbuildmat.2012.07.052.

Goldston, M., Remennikov, A., & Sheikh, M. N. (2016). Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading. Engineering Structures, 113, 220–232. doi:10.1016/j.engstruct.2016.01.044.

Yoo, D. Y., Banthia, N., & Yoon, Y. S. (2016). Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Engineering Structures, 111, 246–262. doi:10.1016/j.engstruct.2015.12.003.

Alsayed, S. H. (1998). Flexural behaviour of concrete beams reinforced with GFRP bars. Cement and Concrete Composites, 20(1), 1–11. doi:10.1016/S0958-9465(97)00061-9.

Kalpana, V. G., & Subramanian, K. (2011). Behavior of concrete beams reinforced with GFRP BARS. Journal of Reinforced Plastics and Composites, 30(23), 1915–1922. doi:10.1177/0731684411431119.

Toutanji, H. A., & Saafi, M. (2000). Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars. ACI Structural Journal, 97(5), 712–719. doi:10.14359/8806.

Gouda, O., Hassanein, A., & Galal, K. (2023). Experimental and numerical study on the crack width and deflection performance of GFRP reinforced concrete beams. Engineering Structures, 283, 115721. doi:10.1016/j.engstruct.2023.115721.

Hasan, M. A., Sheehan, T., Ashour, A., & Elkezza, O. (2023). Flexural behaviour of geopolymer concrete T-Beams reinforced with GFRP bars. Structures, 49, 345–364. doi:10.1016/j.istruc.2023.01.118.

Xue, W., Tan, Y., & Zeng, L. (2010). Flexural response predictions of reinforced concrete beams strengthened with prestressed CFRP plates. Composite Structures, 92(3), 612-622. doi:10.1016/j.compstruct.2009.09.036.

ACI 440.1R-15. (2015). Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars. American Concrete Institute (ACI), Michigan, United States.

CSA-S806-12. (2021). Design and Construction of Building Components with Fibre-Reinforced Polymers. Canadian Standards Association, Toronto, Canada.

ACI CODE-440.11-22. (2022). Building Code Requirements for Structural Concrete Reinforced with Glass Fiber Reinforced Polymer (GFRP) Bars-Code and Commentary. American Concrete Institute (ACI), Michigan, United States.

Vijay, P. V., & GangaRao, H. V. S. (2001). Bending behavior and deformability of glass fiber-reinforced polymer reinforced concrete members. ACI Structural Journal, 98(6), 834–842. doi:10.14359/10750.

ACI 318-19. (2019). Building code requirements for structural concrete and commentary. American Concrete Institute (ACI), Michigan, United States.

Karimipour, A., & Edalati, M. (2020). Shear and flexural performance of low, normal and high-strength concrete beams reinforced with longitudinal SMA, GFRP and steel rebars. Engineering Structures, 221, 0141 0296. doi:10.1016/j.engstruct.2020.111086.

El-Sayed, A. K., El-Salakawy, E. F., & Benmokrane, B. (2006). Shear capacity of high-strength concrete beams reinforced with FRP bars. ACI Materials Journal, 103(3), 383. doi:10.14359/15316.

Li, W., Huang, W., Fang, Y., Zhang, K., Liu, Z., & Kong, Z. (2022). Experimental and theoretical analysis on shear behavior of RC beams reinforced with GFRP stirrups. Structures, 46, 1753–1763. doi:10.1016/j.istruc.2022.10.138.

Johnson, D. T. C. (2014). Investigation of glass fibre reinforced polymer (GFRP) bars as internal reinforcement for concrete structures. Ph.D. Thesis, Toronto, Canada.

Shehata, E., Morphy, R., & Rizkalla, S. (2000). Fibre reinforced polymer shear reinforcement for concrete members: Behaviour and design guidelines. Canadian Journal of Civil Engineering, 27(5), 859–872. doi:10.1139/l00-004.

Ahmed, E. A., El-Salakawy, E. F., & Benmokrane, B. (2010). Fibre-reinforced polymer composite shear reinforcement: performance evaluation in concrete beams and code prediction. Canadian Journal of Civil Engineering, 37(8), 1057–1070. doi:10.1139/l10-046.

Shin, S., Seo, D., & Han, B. (2009). Performance of concrete beams reinforced with GFRP bars. Journal of Asian Architecture and Building Engineering, 8(1), 197–204. doi:10.3130/jaabe.8.197.

Bischoff, P. H., & Gross, S. P. (2011). Design Approach for Calculating Deflection of FRP-Reinforced Concrete. Journal of Composites for Construction, 15(4), 490–499. doi:10.1061/(asce)cc.1943-5614.0000195.

Bischoff, P. H., & Gross, S. P. (2011). Equivalent Moment of Inertia Based on Integration of Curvature. Journal of Composites for Construction, 15(3), 263–273. doi:10.1061/(asce)cc.1943-5614.0000164.

Mousavi, S. R., & Esfahani, M. R. (2012). Effective Moment of Inertia Prediction of FRP-Reinforced Concrete Beams Based on Experimental Results. Journal of Composites for Construction, 16(5), 490–498. doi:10.1061/(asce)cc.1943-5614.0000284.

Ramachandra Murthy, A., Pukazhendhi, D. M., Vishnuvardhan, S., Saravanan, M., & Gandhi, P. (2020). Performance of concrete beams reinforced with GFRP bars under monotonic loading. Structures, 27, 1274–1288. doi:10.1016/j.istruc.2020.07.020.

Chellapandian, M., Mani, A., & Suriya Prakash, S. (2020). Effect of macro-synthetic structural fibers on the flexural behavior of concrete beams reinforced with different ratios of GFRP bars. Composite Structures, 254. doi:10.1016/j.compstruct.2020.112790.

Guadagnini, M., Pilakoutas, K., & Waldron, P. (2003). Shear performance of FRP reinforced concrete beams. Journal of Reinforced Plastics and Composites, 22(15), 1389–1407. doi:10.1177/073168403035579.

Adam, M. A., Said, M., Mahmoud, A. A., & Shanour, A. S. (2015). Analytical and experimental flexural behavior of concrete beams reinforced with glass fiber reinforced polymers bars. Construction and Building Materials, 84, 354–366. doi:10.1016/j.conbuildmat.2015.03.057.

Elgabbas, F., Ahmed, E. A., & Benmokrane, B. (2017). Flexural Behavior of Concrete Beams Reinforced with Ribbed Basalt-FRP Bars under Static Loads. Journal of Composites for Construction, 21(3), 04016098. doi:10.1061/(asce)cc.1943-5614.0000752.

Hassanpour, S., Khaloo, A., Aliasghar-Mamaghani, M., & Khaloo, H. (2022). Effect of Compressive Glass Fiber-Reinforced Polymer Bars on Flexural Performance of Reinforced Concrete Beams. ACI Structural Journal, 119(6), 5–18. doi:10.14359/51734792.

ASTM-C150/C150M-18. (2019). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-18.

ASTM C33/C33M-18. (2003). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.

ASTM C1602/C1602M-12. (2019). Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.

ASTM C494/C494M. (2022). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-19.

ASTM C39/C39M-20. (2020). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-20.

ASTM C496/C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.

ISO 10406-1:2015. (2015). Fiber-reinforced polymer (FRP) reinforcement of concrete - Test methods - Part 1: FRP bars and grids. International Organization for Standardization (ISO), Geneva, Switzerland.

Abdallah, W., Farrag, A. M., Deifalla, A. F., Ibrahim, A. H., Mohamed, H. M., & Ali, A. H. (2023). Shear Performance of GFRP Reinforced Concrete Beams with Seawater and Chopped Fiber. Civil Engineering Journal, 9(4), 835–848. doi:10.28991/CEJ-2023-09-04-05.

Jeong, S. M., & Naaman, A. E. (1995). Ductility of concrete beams prestressed with FRP tendons. Structures Congress -Proceedings, CRC Press, 2, 1466–1469.

Mufti, A. A., Newhook, J. P., & Tadros, G. (1996). Deformability versus ductility in concrete beams with FRP reinforcement. Proceedings of the 2nd International Conference on Advanced Composite Materials in Bridges and Structures, ACMBS-II, 11-14 August, 1996, Quebec, Canada.

Jaeger, GL., Tadros, G., and M. A. (1995). The concept of the overall performance factor in 739 rectangular-section reinforced concrete beams. Proceedings of the Second International RILEM Symposium, 23-25 August, 1995, Ghent, Belgium.

CSA- S16-14. (2017). Canadian Highway Bridge Design Code. Canadian Standards Association, Toronto, Canada.


Full Text: PDF

DOI: 10.28991/CEJ-2024-010-02-011

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 musa abdulmuttalib, Abbas A Allawi, Nazar Oukaili

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message