Effects of GFRP Stirrup Spacing on the Behavior of Doubly GFRP-Reinforced Concrete Beams
Abstract
Doi: 10.28991/CEJ-2024-010-02-011
Full Text: PDF
Keywords
References
Moawad, M. S., & Fawzi, A. (2021). Performance of concrete beams partially/fully reinforced with glass fiber polymer bars. Journal of Engineering and Applied Science, 68, 38. doi:10.1186/s44147-021-00028-6.
Saleh, Z., Goldston, M., Remennikov, A. M., & Sheikh, M. N. (2019). Flexural design of GFRP bar reinforced concrete beams: An appraisal of code recommendations. Journal of Building Engineering, 25. doi:10.1016/j.jobe.2019.100794.
Al-Salloum, Y., Sayed, S. H., & Almusallam, T. H. (1997). Behavior of Concrete Beams Doubly Reinforced by GFRP Bars. Proceedings of the Third International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures (FRPRCS-3), 14-16 October, 1997, Sapporo, Japan.
Said, A. M. I. (2015). Evaluation of Deflection in High Strength Concrete (HSC) I-Beam Reinforced with Carbon Fiber Reinforced Polymer (CFRP) Bars. The 7th Asia Pacific Young Researchers and Graduates Symposium, 20-21 August, 2015, University of Malaya, Kuala Lumpur, Malaysia.
Said, A. I., & Tuma, N. H. (2021). Numerical Modeling for Flexural Behavior of UHPC Beams Reinforced with Steel and Sand-Coated CFRP Bars. IOP Conference Series: Earth and Environmental Science, 856(1), 12003. doi:10.1088/1755-1315/856/1/012003.
Said, A. I., & Abbas, O. M. (2023). Serviceability behavior of High Strength Concrete I-beams reinforced with Carbon Fiber Reinforced Polymer bars. Journal of Engineering, 19(11), 1515–1530. doi:10.31026/j.eng.2013.11.10.
Ali, S. I., & Allawi, A. A. (2021). Effect of Web Stiffeners on The Flexural Behavior of Composite GFRP- Concrete Beam Under Impact Load. Journal of Engineering, 27(3), 76–92. doi:10.31026/j.eng.2021.03.06.
Mohammed, S. A., & Said, A. M. I. (2022). Analysis of concrete beams reinforced by GFRP bars with varying parameters. Journal of the Mechanical Behavior of Materials, 31(1), 767–774. doi:10.1515/jmbm-2022-0068.
Ali, H. H., & Said, A. M. I. (2022). Flexural behavior of concrete beams with horizontal and vertical openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. Journal of the Mechanical Behavior of Materials, 31(1), 407–415. doi:10.1515/jmbm-2022-0045.
Lin, X., & Zhang, Y. X. (2013). Bond-slip behaviour of FRP-reinforced concrete beams. Construction and Building Materials, 44, 110–117. doi:10.1016/j.conbuildmat.2013.03.023.
Issa, M. S., Metwally, I. M., & Elzeiny, S. M. (2011). Influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP rebars. Engineering Structures, 33(5), 1754–1763. doi:10.1016/j.engstruct.2011.02.014.
Said, M., Adam, M. A., Mahmoud, A. A., & Shanour, A. S. (2016). Experimental and analytical shear evaluation of concrete beams reinforced with glass fiber reinforced polymers bars. Construction and Building Materials, 102, 574–591. doi:10.1016/j.conbuildmat.2015.10.185.
Wegian, F. M., & Abdalla, H. A. (2005). Shear capacity of concrete beams reinforced with fiber reinforced polymers. Composite Structures, 71(1), 130–138. doi:10.1016/j.compstruct.2004.10.001.
Chidananda, S. H., & Khadiranaikar, R. B. (2017). Flexural behaviour of concrete beams reinforced with GFRP rebars. International Journal of Advance Research, Ideas and Innovations in Technology, 3(5), 119-128.
Attari, N., Amziane, S., & Chemrouk, M. (2012). Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets. Construction and Building Materials, 37, 746–757. doi:10.1016/j.conbuildmat.2012.07.052.
Goldston, M., Remennikov, A., & Sheikh, M. N. (2016). Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading. Engineering Structures, 113, 220–232. doi:10.1016/j.engstruct.2016.01.044.
Yoo, D. Y., Banthia, N., & Yoon, Y. S. (2016). Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Engineering Structures, 111, 246–262. doi:10.1016/j.engstruct.2015.12.003.
Alsayed, S. H. (1998). Flexural behaviour of concrete beams reinforced with GFRP bars. Cement and Concrete Composites, 20(1), 1–11. doi:10.1016/S0958-9465(97)00061-9.
Kalpana, V. G., & Subramanian, K. (2011). Behavior of concrete beams reinforced with GFRP BARS. Journal of Reinforced Plastics and Composites, 30(23), 1915–1922. doi:10.1177/0731684411431119.
Toutanji, H. A., & Saafi, M. (2000). Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars. ACI Structural Journal, 97(5), 712–719. doi:10.14359/8806.
Gouda, O., Hassanein, A., & Galal, K. (2023). Experimental and numerical study on the crack width and deflection performance of GFRP reinforced concrete beams. Engineering Structures, 283, 115721. doi:10.1016/j.engstruct.2023.115721.
Hasan, M. A., Sheehan, T., Ashour, A., & Elkezza, O. (2023). Flexural behaviour of geopolymer concrete T-Beams reinforced with GFRP bars. Structures, 49, 345–364. doi:10.1016/j.istruc.2023.01.118.
Xue, W., Tan, Y., & Zeng, L. (2010). Flexural response predictions of reinforced concrete beams strengthened with prestressed CFRP plates. Composite Structures, 92(3), 612-622. doi:10.1016/j.compstruct.2009.09.036.
ACI 440.1R-15. (2015). Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars. American Concrete Institute (ACI), Michigan, United States.
CSA-S806-12. (2021). Design and Construction of Building Components with Fibre-Reinforced Polymers. Canadian Standards Association, Toronto, Canada.
ACI CODE-440.11-22. (2022). Building Code Requirements for Structural Concrete Reinforced with Glass Fiber Reinforced Polymer (GFRP) Bars-Code and Commentary. American Concrete Institute (ACI), Michigan, United States.
Vijay, P. V., & GangaRao, H. V. S. (2001). Bending behavior and deformability of glass fiber-reinforced polymer reinforced concrete members. ACI Structural Journal, 98(6), 834–842. doi:10.14359/10750.
ACI 318-19. (2019). Building code requirements for structural concrete and commentary. American Concrete Institute (ACI), Michigan, United States.
Karimipour, A., & Edalati, M. (2020). Shear and flexural performance of low, normal and high-strength concrete beams reinforced with longitudinal SMA, GFRP and steel rebars. Engineering Structures, 221, 0141 0296. doi:10.1016/j.engstruct.2020.111086.
El-Sayed, A. K., El-Salakawy, E. F., & Benmokrane, B. (2006). Shear capacity of high-strength concrete beams reinforced with FRP bars. ACI Materials Journal, 103(3), 383. doi:10.14359/15316.
Li, W., Huang, W., Fang, Y., Zhang, K., Liu, Z., & Kong, Z. (2022). Experimental and theoretical analysis on shear behavior of RC beams reinforced with GFRP stirrups. Structures, 46, 1753–1763. doi:10.1016/j.istruc.2022.10.138.
Johnson, D. T. C. (2014). Investigation of glass fibre reinforced polymer (GFRP) bars as internal reinforcement for concrete structures. Ph.D. Thesis, Toronto, Canada.
Shehata, E., Morphy, R., & Rizkalla, S. (2000). Fibre reinforced polymer shear reinforcement for concrete members: Behaviour and design guidelines. Canadian Journal of Civil Engineering, 27(5), 859–872. doi:10.1139/l00-004.
Ahmed, E. A., El-Salakawy, E. F., & Benmokrane, B. (2010). Fibre-reinforced polymer composite shear reinforcement: performance evaluation in concrete beams and code prediction. Canadian Journal of Civil Engineering, 37(8), 1057–1070. doi:10.1139/l10-046.
Shin, S., Seo, D., & Han, B. (2009). Performance of concrete beams reinforced with GFRP bars. Journal of Asian Architecture and Building Engineering, 8(1), 197–204. doi:10.3130/jaabe.8.197.
Bischoff, P. H., & Gross, S. P. (2011). Design Approach for Calculating Deflection of FRP-Reinforced Concrete. Journal of Composites for Construction, 15(4), 490–499. doi:10.1061/(asce)cc.1943-5614.0000195.
Bischoff, P. H., & Gross, S. P. (2011). Equivalent Moment of Inertia Based on Integration of Curvature. Journal of Composites for Construction, 15(3), 263–273. doi:10.1061/(asce)cc.1943-5614.0000164.
Mousavi, S. R., & Esfahani, M. R. (2012). Effective Moment of Inertia Prediction of FRP-Reinforced Concrete Beams Based on Experimental Results. Journal of Composites for Construction, 16(5), 490–498. doi:10.1061/(asce)cc.1943-5614.0000284.
Ramachandra Murthy, A., Pukazhendhi, D. M., Vishnuvardhan, S., Saravanan, M., & Gandhi, P. (2020). Performance of concrete beams reinforced with GFRP bars under monotonic loading. Structures, 27, 1274–1288. doi:10.1016/j.istruc.2020.07.020.
Chellapandian, M., Mani, A., & Suriya Prakash, S. (2020). Effect of macro-synthetic structural fibers on the flexural behavior of concrete beams reinforced with different ratios of GFRP bars. Composite Structures, 254. doi:10.1016/j.compstruct.2020.112790.
Guadagnini, M., Pilakoutas, K., & Waldron, P. (2003). Shear performance of FRP reinforced concrete beams. Journal of Reinforced Plastics and Composites, 22(15), 1389–1407. doi:10.1177/073168403035579.
Adam, M. A., Said, M., Mahmoud, A. A., & Shanour, A. S. (2015). Analytical and experimental flexural behavior of concrete beams reinforced with glass fiber reinforced polymers bars. Construction and Building Materials, 84, 354–366. doi:10.1016/j.conbuildmat.2015.03.057.
Elgabbas, F., Ahmed, E. A., & Benmokrane, B. (2017). Flexural Behavior of Concrete Beams Reinforced with Ribbed Basalt-FRP Bars under Static Loads. Journal of Composites for Construction, 21(3), 04016098. doi:10.1061/(asce)cc.1943-5614.0000752.
Hassanpour, S., Khaloo, A., Aliasghar-Mamaghani, M., & Khaloo, H. (2022). Effect of Compressive Glass Fiber-Reinforced Polymer Bars on Flexural Performance of Reinforced Concrete Beams. ACI Structural Journal, 119(6), 5–18. doi:10.14359/51734792.
ASTM-C150/C150M-18. (2019). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-18.
ASTM C33/C33M-18. (2003). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
ASTM C1602/C1602M-12. (2019). Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-18.
ASTM C494/C494M. (2022). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-19.
ASTM C39/C39M-20. (2020). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-20.
ASTM C496/C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.
ISO 10406-1:2015. (2015). Fiber-reinforced polymer (FRP) reinforcement of concrete - Test methods - Part 1: FRP bars and grids. International Organization for Standardization (ISO), Geneva, Switzerland.
Abdallah, W., Farrag, A. M., Deifalla, A. F., Ibrahim, A. H., Mohamed, H. M., & Ali, A. H. (2023). Shear Performance of GFRP Reinforced Concrete Beams with Seawater and Chopped Fiber. Civil Engineering Journal, 9(4), 835–848. doi:10.28991/CEJ-2023-09-04-05.
Jeong, S. M., & Naaman, A. E. (1995). Ductility of concrete beams prestressed with FRP tendons. Structures Congress -Proceedings, CRC Press, 2, 1466–1469.
Mufti, A. A., Newhook, J. P., & Tadros, G. (1996). Deformability versus ductility in concrete beams with FRP reinforcement. Proceedings of the 2nd International Conference on Advanced Composite Materials in Bridges and Structures, ACMBS-II, 11-14 August, 1996, Quebec, Canada.
Jaeger, GL., Tadros, G., and M. A. (1995). The concept of the overall performance factor in 739 rectangular-section reinforced concrete beams. Proceedings of the Second International RILEM Symposium, 23-25 August, 1995, Ghent, Belgium.
CSA- S16-14. (2017). Canadian Highway Bridge Design Code. Canadian Standards Association, Toronto, Canada.
DOI: 10.28991/CEJ-2024-010-02-011
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 musa abdulmuttalib, Abbas A Allawi, Nazar Oukaili
This work is licensed under a Creative Commons Attribution 4.0 International License.