Prediction of the Dynamic Properties of Concrete Using Artificial Neural Networks
Abstract
Doi: 10.28991/CEJ-2024-010-01-016
Full Text: PDF
Keywords
References
Kasopa, E., Chen, X., Yao, G., & Zhao, X. (2023). Dynamic Behavior of Concrete: A Review. International Journal for Research in Applied Science & Engineering Technology, 11(3), 294–304. doi:10.22214/ijraset.2023.49358.
Cui, J., Guan, X., Shi, Y., & Li, Z. (2023). A high-fidelity constitutive model considering hydrostatic damage for predictions of high dynamic properties of concrete structures. Computers & Structures, 287(ue15). doi:10.1016/j.compstruc.2023.107115.
Gonov, M. E., Balandin, V. V., Bragov, A. M., & Konstantinov, A. Y. (2023). Study of the Dynamic Properties of Reinforced Concrete under High-Speed Compression. Sixty Shades of Generalized Continua. Advanced Structured Materials, 170. Springer, Cham, Switzerland. doi:10.1007/978-3-031-26186-2_18.
Ma, Z., Ma, C., Du, C., Zhang, S., Zhang, H., Zhang, X., Zhang, X., Wang, J., Tian, M., & Wang, Y. (2023). Research on dynamic mechanical properties of polypropylene fiber-modified rubber foamed concrete. Construction and Building Materials, 404, 10. doi:10.1016/j.conbuildmat.2023.133282.
Ivanchev, I. (2022). Experimental determination of dynamic modulus of elasticity of concrete with ultrasonic pulse velocity method and ultrasonic pulse echo method. IOP Conference Series: Materials Science and Engineering, 1252(1), 012018. doi:10.1088/1757-899x/1252/1/012018.
Wang, Z., Gao, Z., Wang, Y., Cao, Y., Wang, G., Liu, B., & Wang, Z. (2015). A new dynamic testing method for elastic, shear modulus and Poisson’s ratio of concrete. Construction and Building Materials, 100, 129–135. doi:10.1016/j.conbuildmat.2015.09.060.
Hajjeh, R. H., El-Sahawneh, E. I., Yasin, A. A., & Aw Wad, T. M. (2013). Determination of Dynamic Physical Properties of High Strength Concrete Using Ultrasonic Tester. International Journal of Multidisciplinary Research & Advances in Engineering, 5(II), 137–148.
Guo, L., Guo, R., Yan, Y., Zhang, Y., Wang, Z., & Mu, Y. (2022). Dynamic Compression Mechanical Properties of Polyoxymethylene-Fiber-Reinforced Concrete. Materials, 15(21), 7784. doi:10.3390/ma15217784.
Zhao, Z. (2021). Dynamic Properties Test and Constitutive Relation Study of Lightweight Aggregate Concrete under Uniaxial Compression. Advances in Materials Science and Engineering, 2021. doi:10.1155/2021/2678952.
Trifone, L. (2017). A study of the correlation between static and dynamic modulus of elasticity on different concrete mixes. Master Thesis, West Virginia University, Morgantown, United States.
Shen, D. J., & Lu, X. L. (2008). Experimental study on dynamic compressive properties of microconcrete under different strain rate. The 14th World Conference on Earthquake Engineering, 12-17 October, Beijing, China.
Wang, H., Liu, K., & Zhang, Q. (2021). Dynamic deformation and fracturing properties of concrete under biaxial confinements. EPJ Web of Conferences, 250, 06008. doi:10.1051/epjconf/202125006008.
Chen, H. J., Huang, C. H., & Tang, C. W. (2010). Dynamic properties of lightweight concrete beams made by sedimentary lightweight aggregate. Journal of Materials in Civil Engineering, 22(6), 599-606. doi:10.1061/(ASCE)MT.1943-5533.0000061.
Wang, H. T., & Wang, L. C. (2013). Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete. Construction and Building Materials, 38, 1146-1151. doi:10.1016/j.conbuildmat.2012.09.016.
Zhang, N., Zhou, J., & Ma, G. Wei. (2020). Dynamic Properties of Strain-Hardening Cementitious Composite Reinforced with Basalt and Steel Fibers. International Journal of Concrete Structures and Materials, 14(1), 44. doi:10.1186/s40069-020-00415-y.
Gamil, Y. (2023). Machine learning in concrete technology: A review of current researches, trends, and applications. Frontiers in Built Environment, 9. doi:10.3389/fbuil.2023.1145591.
Abdolrasol, M. G. M., Suhail Hussain, S. M., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., Ali, J. A., Mekhilef, S., & Milad, A. (2021). Artificial neural networks based optimization techniques: A review. Electronics (Switzerland), 10(21), 2689. doi:10.3390/electronics10212689.
Ramzi, S., Moradi, M. J., & Hajiloo, H. (2023). The Study of the Effects of Supplementary Cementitious Materials (SCMs) on Concrete Compressive Strength at High Temperatures Using Artificial Neural Network Model. Buildings, 13(5), 1337. doi:10.3390/buildings13051337.
Yasin, A. A., Awwad, M. T., Malkawi, A. B., Maraqa, F. R., & Alomari, J. A. (2023). Optimization of Tuff Stones Content in Lightweight Concrete Using Artificial Neural Networks. Civil Engineering Journal (Iran), 9(11), 2823–2833. doi:10.28991/CEJ-2023-09-11-013.
Pal, P. (2019). Dynamic poisson’s ratio and modulus of elasticity of pozzolana Portland cement concrete. International Journal of Engineering and Technology Innovation, 9(2), 131-144.
Habib, A., Yildirm, U., & Eren, O. (2020). Mechanical and dynamic properties of high strength concrete with well graded coarse and fine tire rubber. Construction and Building Materials, 246. doi:10.1016/j.conbuildmat.2020.118502.
Al-Masoodi, A. H. H., Kawan, A., Kasmuri, M., Hamid, R., & Khan, M. N. N. (2016). Static and dynamic properties of concrete with different types and shapes of fibrous reinforcement. Construction and Building Materials, 104, 247–262. doi:10.1016/j.conbuildmat.2015.12.037.
Abu-Faraj, M., Al-Hyari, A., & Alqadi, Z. (2022). Experimental Analysis of Methods Used to Solve Linear Regression Models. Computers, Materials & Continua, 72(3), 5699–5712. doi:10.32604/cmc.2022.027364.
Mirbod, M., & Shoar, M. (2022). Intelligent Concrete Surface Cracks Detection using Computer Vision, Pattern Recognition, and Artificial Neural Networks. Procedia Computer Science, 217, 52–61. doi:10.1016/j.procs.2022.12.201.
Miao, P., Yokota, H., & Zhang, Y. (2023). Deterioration prediction of existing concrete bridges using a LSTM recurrent neural network. Structure and Infrastructure Engineering, 19(4), 475–489. doi:10.1080/15732479.2021.1951778.
Sun, B., Ping, Y., Zhu, Z., Jiang, Z., & Wu, N. (2020). Experimental Study on the Dynamic Mechanical Properties of Large-Diameter Mortar and Concrete Subjected to Cyclic Impact. Shock and Vibration, 2020, 9. doi:10.1155/2020/8861197.
González-Pérez, C. A., & De-La-colina, J. (2022). Determination of Mass Properties in Floor Slabs from the Dynamic Response Using Artificial Neural Networks. Civil Engineering Journal (Iran), 8(8), 1549–1564. doi:10.28991/CEJ-2022-08-08-01.
Asteris, P. G., & Nguyen, T.-A. (2022). Prediction of shear strength of corrosion reinforced concrete beams using Artificial Neural Network. Journal of Science and Transport Technology, 2(2), 1–12. doi:10.58845/jstt.utt.2022.en.2.2.1-12.
T Tuhta, S. E. R. T. A. C., & Günday, F. (2020). Dynamic Parameters Determination of Concrete Terrace Wall with System Identification Using ANN. JournalNX- A Multidisciplinary Peer Reviewed Journal, 6(9), 194-202.
Abdulabbas, Z. H., & Al Asadi, L. A. R. (2021). Calculating Dynamic Strengths of Concrete Subjected to Impact Load. Key Engineering Materials, 895, 12–19. doi:10.4028/www.scientific.net/kem.895.12.
Habib, A., & Yildirim, U. (2022). Estimating mechanical and dynamic properties of rubberized concrete using machine learning techniques: a comprehensive study. Engineering Computations, 39(8), 3129–3178. doi:10.1108/ec-09-2021-0527.
Wang, R., Cao, Z., Li, Y., Shi, Q., & Zhang, Y. (2022, January). Effect of loading rate on dynamic properties of plastic concrete under triaxial loading. MEMAT 2022; 2nd International Conference on Mechanical Engineering, Intelligent Manufacturing and Automation Technology, 7-9 January, 2022, Guilin, China.
Congro, M., Monteiro, V. M. de A., Brandão, A. L. T., Santos, B. F. do., Roehl, D., & Silva, F. de A. (2021). Prediction of the residual flexural strength of fiber reinforced concrete using artificial neural networks. Construction and Building Materials, 303, 2021. doi:10.1016/j.conbuildmat.2021.124502.
Thirumalai Raja, K., Jayanthi, N., Leta Tesfaye, J., Nagaprasad, N., Krishnaraj, R., & Kaushik, V. S. (2022). Using an Artificial Neural Network to Validate and Predict the Physical Properties of Self-Compacting Concrete. Advances in Materials Science and Engineering, 2022, 1–10. doi:10.1155/2022/1206512.
Hiew, S. Y., Teoh, K. Bin, Raman, S. N., Kong, D., & Hafezolghorani, M. (2023). Prediction of ultimate conditions and stress–strain behaviour of steel-confined ultra-high-performance concrete using sequential deep feed-forward neural network modelling strategy. Engineering Structures, 277, 115447. doi:10.1016/j.engstruct.2022.115447.
Abdulla, N. A. (2022). Application of artificial neural networks for prediction of concrete properties. Magazine of Civil Engineering, 110(2), 11007. doi:10.34910/MCE.110.7.
ASTM C597-22. (2023). Standard Test Method for Pulse Velocity through Concrete. (2022). ASTM International, Pennsylvania, United States. doi:10.1520/C0597-22.
DOI: 10.28991/CEJ-2024-010-01-016
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Amjad Abed Yasin
This work is licensed under a Creative Commons Attribution 4.0 International License.